156. On K-Souslin Spaces

By Michiko NAKAMURA

Department of Mathematics, Faculty of Science, Science University of Tokyo

(Comm. by Kinjirô Kunugi, M. J. A., Nov. 12, 1971)

A. Martineau defined in [1] the K-Souslin spaces as a generalization of the Souslin spaces. In this paper we shall show that the K-Souslin spaces coincide with the quasi-Souslin spaces defined in [2].

Let E be a topological space, $\mathcal{L}(E)$ the set of all subsets of E, and $\mathcal{K}(E)$ the set of all non-empty compact subsets of E. We consider $\mathcal{L}(E)$ as the topological space where $\mathcal{L}(U)$ for all open sets U of E constitutes a basis of the open sets for $\mathcal{L}(E)$, and we consider in $\mathcal{K}(E)$ the relative topology of that of $\mathcal{L}(E)$.

A Hausdorff topological space E is said to be a K-Souslin space if there exist a complete separable metric space P and a continuous mapping φ from P to $\mathcal{K}(E)$ such that $E = \bigcup_{p \in P} \varphi(p)$.

Proposition 1. Every quasi-Souslin space E is a K-Souslin space.

Proof. Since E is a quasi-Souslin space, there exists a defining S-filters $\Phi_m(m=1,2,\cdots)$ such that each Φ_m has a filter base

$$S_n^{(m)}(n=1,2,\cdots).$$

For any sequence $n_i(i=1,2,\cdots)$ of natural numbers, $E_{n_1,n_2,\ldots,n_i} = (S_{n_1}^{(1)})^c \cap (S_{n_2}^{(2)})^c \cap \cdots \cap (S_{n_i}^{(i)})^c$ converges for $i \to \infty$ to the compact set $\bigcap_i E_{n_1,n_2,\ldots,n_i}^-$ in $\mathcal{L}(E)$, since every ultrafilter containing all E_{n_1,n_2,\ldots,n_i} converges.

Let P be the set of all sequences of natural numbers, that is $P = \prod_{i=1}^{\infty} N_i$ where each $N_i = N$, the set of all natural numbers with the discrete topology. Then P is a complete separable metric space.

Now we define a mapping φ from P to $\mathcal{K}(E)$ by $\varphi(p) = \bigcap_i E_{n_1, n_2, \dots, n_i}^-$ for all $\{n_i\} = p \in P$. Then we can see easily that φ is continuous and $E = \bigcup_{p \in P} \varphi(p)$.

Proposition 2. Every K-Souslin space is a quasi-Souslin space.

Proof. It is sufficient to prove for any Hausdorff topological space E the following fact.

If φ be a continuous mapping from a quasi-Souslin space F to $\mathcal{K}(E)$ and $E = \bigcup_{x \in F} \varphi(x)$, then E is a quasi-Souslin space.

Then, it is sufficient to prove that the subset

$$D = \{(x, y) \mid x \in F, y \in \varphi(x)\}$$

of $F \times E$ is quasi-Souslin, because E is the image of D by the projection from $F \times E$ to E.

Let q be the restriction to D of the projection from $F \times E$ to F, then q(D) = F.

Let $\Phi_n(n=1,2,\cdots)$ be a defining S-filters in F, then $q^{-1}(\Phi_n)$ are S-filters of D.

Let Ψ be any ultrafilter of D disjoint from every $q^{-1}(\Phi_n)$, then for each n there exists an A_n in Φ_n such that $q^{-1}(A_n) \cap B_n = \phi$ for some B_n in Ψ , therefore $A_n \cap q(B_n) = \phi$. That is, for the ultrafilter $q(\Psi)$ of F, we have $q(\Psi) \supset \Phi_n$ for each n. Therefore $q(\Psi)$ converges to some element x in F.

Then to prove that Ψ is convergent in D, it is sufficient to show that any neighbourhood W of the compact set $\{x\} \times \varphi(x)$ is a member of Ψ . Now, since φ is continuous mapping from F to $\mathcal{L}(E)$, we can find a neighbourhood of U of x and an open set V including $\varphi(x)$ such that $W \supset (U \times V) \cap D$ and $V \supset \varphi(U)$. Since $q(\Psi)$ converges to x, there exists a member B in Ψ such that $q(B) \subset U$.

Then, from $q(U) \subset V$, we can conclude

$$B \subset (U \times \varphi(U)) \cap D \subset (U \times V) \cap D \subset W$$
.

Thus the proof is completed.

References

- [1] A. Martineau: Sur des théorèmes de S. Banach et L. Schwartz concernant le graphe fermé. Studia Mathematica, 30(1), 43-51 (1968).
- [2] M. Nakamura: On quasi-Souslin space and closed graph theorem. Proc. Japan Acad., 46(6), 514-517 (1970).