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Introduction. We say that a subgroup H of a group G is of rank
2, if the number of double cosets H\G/H is equal to 2. Any subgroup of
rank 2 of G is the stabilizer of a point of some doubly transitive permu-
tation representation of G, and vice versa. It is known that the sym-
plectic group Sp(2n, 2) has two kinds of subgroups of rank 2 of index
2n-l(2n+ 1) and 2-(2--1) which are isomorphic to the groups 0(2n, 2,
+ 1) and 0(2n, 2, --1), respectively. Here 0(2n, 2, / 1) and 0(2n, 2, --1)
denote the orthogonal group of index n and n--1 defined over a field
with 2 elements, respectively.

The purpose of this note is to give an outline of the proof of the
following Theorem 1 which asserts that the two kinds of subgroups
mentioned above are the only subgroups of rank 2 of the group Sp(2n,2).
Details will be published elsewhere.

Theorem 1. Let H be a subgroup of rank 2 of She group Sp(2n,
2), n/> 3. Then either
1) H is of index 2n-l(2n+ 1) and is isomorphic So She group 0(2n, 2,
+1), or
2) H is of index 2n-x(2n- 1) and is isomorphic to the group 0(2n, 2,- 1).

1. The group Sp(2n, 2).
We may define G=Sp(2n, 2), the symplectic group defined over the

finite field GF(2), by

G= X e GL(2n, 2); tXJX:J, with J=
I

Here I denotes the n n identity matrix, and the unwritten places of
any matrix always represent 0. The group G=Sp(2n, 2) is simple if
n>3.

Let us define some subgroups of the group G as follows:

Q-- X VL(2n, 2) X- (In B), with tB:Bt
L= XeGL(2n, 2);X (A= ) withAeGL(n,

R-- X e GL(2n, 2);X= (A t:l, where A is any upper triangu-
A!

lar unipotent n n matrix
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Then L and R normalizes Q. We set B--RQ (semi-direct product).
Let denote the canonical projection B--RQ-R--B/Q.

Now, Z(B)(=the center of B) consists of 4 elements 1, u, u and
u, where u=L. JFei,n+i, U--Ine,n+J-ei,n+ and u=uu=IJFei,n+
+e,/.+e.,/. Here the e denote the matrix whose (i, ])-entry is 1
and other entries are all 0.

We can also regard the group G-Sp(2n, 2) as the Chevalley group
of type (C) defined over the field GF(2). Naturally G has a Tits sys-
tem (i.e., BN-pair) whose Coxeter diagram (W, R) is as follows:

o--o--o o o, R={w,,w,...,
’tO1 ’W2 "W3 ’Wn-1 ’Wn

For any subset JcR, the groups W and G are defined by

W:the group generated by the w with w J,
G:wBwB, where B denotes the Borel subgroup of the Tits

system.
Now, we can show that we may take the subgroup RQ:B for the

Borel subgroup, the group Ce(u)(resp. Ce(u2), Ce(u3)) for the subgroup
G_{}(resp. G_{}, G_{,m}) and the group LQ for the subgroup
Ga_{} of a fixed Tits system of G.

2. Outline o the proof of Theorem 1.
Let H be a subgroup of rank 2 of the group G:Sp(2n, 2), and let

Z be the irreducible character of G such that (1,)=1 + Z, where 1,
and le denote the identity characters of the groups H and G respec-
tively and (1) denotes the induced character of 1 to G. We fix these
notations throughout this note.

To avoid the complication of the statements and to clarify the
method of the proof, we always assume that n>/7 in the rest of this
note. The proof for n:3, 4, 5 and 6 is done in the same way as that
for n> 7 in broad outline although some special treatments are needed,
and is omitted in this note.

The proof of Theorem I is completed using the following chain of
Lemmas I to 5.

Lemma 1. G HI22, consequently Z(1)22-1.
Proof of Lemma 1. Since[G: C(u)l:22-1, we have the asser-

tion by a lemma of Ed. Maillet (Cf. [1], Lemma 3).
Lemma 2. H contains an element x which is conjugate to one o/

the elements u, u2 and u3.
To prove Lemma 2, we need Propositions A and B.
Proposition A (This is proved by making use of the results in

J. A. Green [3]. Here we use the assumption that n/> 7). The irre-
ducible characters of GL(n, 2) whose degrees ave 22n-2 are as follows:
1) I[n], of degree 1,
2) I[n--1, 1], of degree 2(2--1),
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23) I[n--2, 2], of degree (2-1)(2--1),
4) --1211] In_2[l], Of degree (2--I)(2---I).
(For the notation, see [3]. Since the 1-simplex and 2-simplex are
unique in this case, the subscripts about simpleces are omitted.)

Proposition B (This is proved by Proposition A together with
some additional considerations). Any subgroup K of GL(n, 2) whose
index is 2- is conjugate to one of the following subgroups"
1) GL(n, 2),

2) G) X e GL(n, 2) X= A e GL(n--1, 2)

g) G- X GL(, 2) X= A GL(2, 2), B GL(--2, 2)
B

) G-= X e GL(,2) X= B

Proof of Lemma Z. Le us assume that the assertion is false.
Clearly we have IL:LHI by emma 1, and we have

IL: (LH)I2- from the above assumption. hus we may assume
that (L H) is one of the subgroups listed in Proposition B. Clear-
ly we have H, and the grou H must be invariant un-
der the aetion of (LH). However, we can show that for every
group (L H) listed in Proposition B, any subgrou of which is of
index 2 and invariant under the action of (LH) contains an
element which is conjugate in G to one of , and , a contradiction.
hus Lemma 2 is roved.
Lemma 3. The irreducible character Z appears in (lo_,,).
Proof of Lemma . By Lemma 2 H contains an element x which

is conjugate in G to one of u, u and u. Let us assume that Z does
not appear in (le_,)e. Then le is the only irreducible character of
G which appears both in (lce())e and (1.)e, hence a theorem of D. E.
Littlewood and J. S. Frame shows that G=Ce(x)H. Hence we have
[G: Ce(x)]=]Ca(x)H: H]=]H: H Ce(x)]=]H: C(x)]. Now, the sub-
group generated by the elements which are conjugate in G to x is a
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subgroup of H(G), and moreover this subgroup must be a normal
subgroup of G. This is a contradiction, and Lemma 3 is proved.

Lemma 4. The irreducible character Z is equal to either the irre-
ducible character or , where and are the non-identity irre-
ducible characters of G appearing in (le_(,)e. Moreover, the index
of H in G is either 2-1(2-t-1) or 2n-(2--1).

TO prove Lemma 4, we need Propositions C and D.
Proposition C. (lea_w)e is decomposed into 3 irreducible char-

acters whose multiplicities are all 1. (lea_)e is decomposed into 6
irreducible characters whose multiplicities are all 1. (lea_(,) is
decomposed into 8 irreducible characters of which 5 are of multiplicities
1 and 3 are of multiplicities 2.

Proposition C is proved by looking at the characters of the Weyl
group. (See [2], there it is proved that there exists a bijection between
the set of irreducible characters of W and the set of irreducible char-
acters of G appearing in (1.) which preserves the multiplicities in
(1)TM and (le)e.)

Proposition D. The degree of 6 irreducible characters of G ap-
pearing in (le_() are as follows"
1) 1
2) (2-1)(2--1-1)
3) (2"+1)(2"--1)

2 (2

_
1)(2_ 1)(2_+ 1)(2__ 1)

5) (2 + 1)(2-1)(2’-- 1)(2-+ 1)

6) -(2 + 1)(2-1)(2-+ 1)(2-- 1).

Moreover the first three members are those characters appearing in
(la_.,)e and are respectively le, Z and

Proposition D is proved by the method of intersection matrices in
D. G. Higman [4]. Note that the intersection matrix of the permuta-
tion group (G, G/G_) is given as ollows" rank is 6 and the subde-
grees are /0-1, /=6(2---1), /.=16/3(2-4--1)(2"---1), /=2-,

6.2-’ and l--3.2-(2n-- 1) the intersection matrix M=(/.))
is given by

0 1 0
6(22n-4-I) 22n-4+ 1 9

0 22n-3--8 3.22n--15
0 0 0
0 22n-4 0
0 22n-3 9.22n-

0 0 0
0 22n-4-1 1
0 0 22n---2

3(22= --1) 0 22n-3
0 22n-t- 1 2

3(22n--1) 22n-a--4 7"22n-a-7
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the eigen values of M are 0--6(22n-4--1), 71--(2n-1--5)(2-2+1), 2
--(2-/5)(2---1), 0----3(2-+1), 0--3(2n---1) and 0----3. We
have the degrees by [4], Theorem 5.5. The assertion of the latter part
is easily verified.

Proof of Lemma 4. Let @, be the irreducible characters of G
which appear in (1_(,,) but not in (1_())e. Now, we can show
using Propositions C and D that if (1) or @(1) is odd then both @(1)
and .(1) are >/2TM. Thus Lemma 4 is immediately proved by Proposi-
tions C and D together with the fact that Z(1) is odd. Because, if (1)
is even, then H contains a Sylow 2-subgroup, and so H is a parabolic
subgroup. However, we can see that there exists no parabolic sub-
group of rank 2. This is proved by looking at the Weyl group (see [2]).

Lemma 5 (This lemma complete the proo of Theorem 1)o H is
isomorphic to either 0(2n, 2, -t- 1) or 0(2n, 2, -1).

Iroof of Lemma 5. Let H be the subgroup of H generated by all
elations in H. From Lemma 4, we can see that H0 contains 2-(2-1)
or 2-(2 / 1) elations according as Z--Z or Z. Using this fact we can
prove first that H is an irreducible subgroup, and next that H0 is an
irreducible subgroup. The final step of the identification is done using

the classification theorem of irreducible subgroups of SL(2n, 2)
generated by elations (transvections) due to J. McLaughlin [5].
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