4. On a Nuclear Function Space on a Topological Space

By Shunsuke FUNAKOSI Köbe University

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 12, 1972)

In this paper, we construct the nuclear function space on a topological space X with a measure μ such that $\mu(K) < \infty$ for every compact subset K of X.

The construction can, of course, be adopted for locally compact groups with a left or right Haar measure, and so the function spaces defined in the present paper include those due to Pietsh [1].

For nuclear spaces and the related notions, see [2]. Throughout this paper we denote by C(X) the space of all continuous functions on a topological space X.

Definition. Let X be a topological space with a measure μ such that $\mu(K) < \infty$ for every compact subset K of X. A subspace N(X) of C(X) is said to have the property (A) if for every compact subset K there exist a compact subset $H \supset K$ and a positive real number ρ such that

$$\sup \{ |\phi(x)|; x \in K \} \leq \rho \left\{ \int_{H} |\phi(x)|^{2} d\mu(x) \right\}^{1/2}$$

for every $\phi \in N(X)$.

Theorem 1. Let X be a topological space with a measure μ such that $\mu(K) < \infty$ for every compact subset K of X. Let N(X) be a subspace of C(X) with the property (A).

Define the topology of N(X) by the system of seminorms

$$\|\phi\|_{\kappa} = \left\{ \int_{\kappa} |\phi(x)|^2 d\mu(x) \right\}^{1/2}, \qquad K \in \mathfrak{S}$$

where \mathfrak{S} is the family of all compact subsets of X. Then the locally convex space N(X) is a nuclear space.

Proof. Let K be a member of \mathfrak{S} and let \wedge be a canonical mapping of N(X) into $N(X)/\{\phi; \|\phi\|_{\mathcal{K}}=0\}$. We denote by $H_{\mathcal{K}}$ the completion of the quotient space $N(X)/\{\phi; \|\phi\|_{\mathcal{K}}=0\}$ with respect to the quotient norm. Then it is clear that $H_{\mathcal{K}}$ is a Hilbert space.

In order to show that N(X) is a nuclear space, it suffices to prove that for any compact subset K there exists a compact subset $T \supset K$ such that the canonical mapping $H_T \rightarrow H_K$ is of Hilbert-Schmidt type. By the assumption, we have the inequality

$$\sup \{ |\phi(x)|; x \in K \} \leq \rho \left\{ \int_{T} |\phi(x)|^2 d\mu(x) \right\}^{1/2}$$

for every $\phi \in N(X)$.

Now let

 $\langle \hat{\phi}, \delta_x \rangle = \phi(x)$ for every $x \in K$ and every $\phi \in N(X)$.

Then δ_x is a continuous linear form defined on a dense subspace of H_T . The continuous linear form δ_x can be extended continuously to the whole space H_T . We denote again by δ_x the extended continuous linear form. Consequently, we have for every $x \in K$

$$|\langle \hat{\phi}, \delta_x \rangle| = |\phi(x)| \leq \rho \left\{ \int_T |\phi(x)|^2 d\mu(x) \right\}^{1/2},$$

and so

 $\|\delta_x\|'_T \leq \rho$ where $\| \|'$ denotes the norm of the dual of H_T .

Let $\{\hat{\phi}_i\}$ be a complete orthonormal system of H_T and let $\{\phi_i\}$ be the corresponding elements of N(X). By the Parseval's equality, we have

$$\sum_{i=1}^{\infty} |\phi_i(x)|^2 = \sum_{i=1}^{\infty} |\langle \hat{\phi}_i, \delta_x
angle|^2 = \|\delta_x\|'_T^2 \leq
ho^2 \quad ext{for every} \quad x \in K.$$

Hence

$$\sum_{i=1}^{\infty} \|\hat{\phi}_i\|_K^2 = \sum_{i=1}^{\infty} \int_K |\phi_i(x)|^2 d\mu(x) \leq \rho^2 \mu(K).$$

Therefore the canonical mapping $H_T \rightarrow H_K$ is of Hilbert-Schmidt type. This completes the proof.

In particular, if topological space X is σ -compact; then there exists a sequence $\{X_n\}$ of compact subsets of X such that $X = \bigcup_{n=1}^{\infty} X_n$ and $X_n \subset X_{n+1}$ for all $n \in N$; and consequently N(X) is a (complete) metrizable nuclear space.

The next theorem gives a partial converse of Theorem 1.

Theorem 2. Let X be a σ -compact topological space and let $\{X_n\}$ be a sequence of compact subsets of X such that $X = \bigcup_{n=1}^{\infty} X_n$ and $X_n \subset X_{n+1}$ for all $n \in N$. Moreover let M(X) be a subspace of C(X) with the locally convex topology defined by the system of countable norms $\|\phi\|_n = \sup \{ |\phi(x)|; x \in X_n \}.$

If M(X) is a nuclear space, then there exists a positive Radon measure μ on X such that M(X) has the property (A).

Proof. Since M(X) is a nuclear space, for any positive integer n there exists m > n such that the canonical mapping $H_m \to H_n$ is a nuclear mapping where $H_i(i=1, 2, \cdots)$ is the completion of the quotient space $M(X)/\{\phi; \|\phi\|_i=0\}$ with respect to the quotient norm. It follows that we can find a sequence $\{a_i\}$ of continuous linear forms on H_m with $\sum_{i=1}^{\infty} \|a_i\|_m^{\prime} < \infty$ and a sequence $\{\phi_i\}$ in H_n such that

$$\|\phi_i\|_n \leq 1$$

and

$$\phi(x) = \sum_{i=1}^{\infty} \langle \phi, a_i \rangle \phi_i(x)$$
 for every $\phi \in H_m$ and for all $x \in X_n$.

Each continuous linear form a_i can be extended to continuous

14

linear form μ_i on $C(X_m)$ with $||a_i|'_m = ||\mu_i||'$ where $C(X_m)$ is the normed space of all continuous functions on X_m with the norm $||\phi|| = \sup \{|\phi(x)|; x \in X_m\}$ and || ||' denotes the norm of the dual of $C(X_m)$.

Now we define a positive Radom measure μ_{X_m} on X_m by

$$\mu_{X_m} = \sum_{i=1}^{\infty} |\mu_i|$$

Then we have

$$\begin{aligned} |\phi(x)| &\leq \sum_{i=1}^{\infty} |\langle \phi, a_i \rangle | \leq \sum_{i=1}^{\infty} \langle |\phi|, \mu_i \rangle \\ &= \langle |\phi|, \mu_{X_m} \rangle \\ &= \int_{X_m} |\phi(x)| d\mu_{X_m}(x) \end{aligned}$$

for every $x \in X_n$.

Hence

$$\sup \{ |\phi(x)|; x \in X_n \} \leq \int_{X_m} |\phi(x)| d\mu_{X_m}(x) \quad \text{for all} \quad \phi \in M(X).$$

Let us define a positive Radom measure μ on X by

$$\int_{X} |\phi(x)| d\mu(x) = \sum_{n=1}^{\infty} 2^{-n} (\mu_{X_n}(X_n))^{-1} \int_{X_n} |\phi(x)| d\mu_{X_n}(x).$$

Then we have, for each $\phi \in M(X)$

$$\sup \left\{ |\phi(x)|; x \in X_n \right\} \leq \rho' \int_{X_m} |\phi(x)| d\mu(x)$$

where $\rho' = 2^m \mu_{X_m}(X_m)$.

On the other hand, as is well known

$$\left\{ \int_{X_m} |\phi(x)|^p d\mu(x) \right\}^{1/p} \leq \mu(X_m)^{1/p - 1/q} \left\{ \int_{X_m} |\phi(x)|^q d\mu(x) \right\}^{1/q}$$

for all integers p, q such that $q \ge p \ge 1$. Thus we have the required inequality

$$\sup \{ |\phi(x)|; x \in X_n \} \leq \rho \int_{X_m} |\phi(x)|^2 d\mu(x).$$

This completes the proof.

References

- [1] Pietsch, A.: Nukleare Funktionenräume. Math. Nachr., 33, 377-384 (1967).
- [2] ——: Nukleare lokalkonvexe Räume. Berlin (1965).