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1. Introduction. We showed in [2] that the entropy in the infor-
mation theory can be characterized as the semivaluation on the semi-
lattice, and we discussed about measure preserving transformations as
entropy preserving lattice-isomorphisms on the space of all measurable
finite partitions. In this paper, we shall analyse the relation between
measure preserving transformations and entropy preserving lattice-
isomorphisms more minutely. Considering an arbitrary entropy pre-
serving lattice-isomorphism which is defined abstractly as a mapping
from the family of all finite partitions of a probability measure space
onto that of another probability space, we shall see that such a lattice-
isomorphism induces an isometrical isomorphism from the measure
algebra of the former space onto the algebra of the latter. Hence, on
some natural measure spaces, entropy preserving lattice-isomorphisms
are represented as measure preserving point transformations. And we
shall see that two concepts of conjugacy (cf. Billingsley [1], p. 66) and
isomorphism of AD-systems (cf. [2]) are equivalent for the general dy-
namical systems.

I wish to express my heartiest thanks to Professor H. Umegaki for
his encouragements and advices in preparing this work.

2. Notations and definitions. In what follows we deal with two
probability measure spaces (X, 2d’, p) and (Y, q], q). When we indicate
either (X,:, p) or (Y, q], q), we represent it commonly by (Z, , r).
The quotient algebra /, where 3 is the ideal of null sets, is simply
written by , and called a measure algebra with the measure r. The
sets in are denoted by A, B, C, and the elements in are denoted
by ,/, ,..., where represents the residue class containning the
set A in . The class of all finite measurable partitions of Z, which
is a lattice with the order of refinement < (and V, / for the two ope-
rations of join and meet for the lattice), is denoted by Fz, and , ,
C,... are elements in F2. The entropy function H(.) on Fz is defined
by
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(2.1) H()=- r(A) log r(A) ( e Fz).
Ae

The entropy function is the semivaluation on the lattice Fz, i.e., the
following relation is satisfied" for , ., C e Fz with

_
F,

(2.2) H(VC) +H() <_H(V_) +H(C).
We can induce a pseudo-metric p in Fz by the formula" p(, _)

=2H(V_)--H()-H()(cf. [2]). Then we can make the quotient
metric space (Fz, ) of (Fz, p). An element 4 (-{A, ..., A}) in the
quotient metric space Fz is expressed by a family {A, ..., A} of ele-
ments A in with AAA=z(i=]) and VA=Z. So we can write
4={A, ..., A} and see that Fz is also a lattice. By n(4) we denote
the number n of such elements A with r(A)0 in A. We shall use
the same symbolH for the entropy on Fz, i.e., H(4)-H() for e
then H is a semivaluation on the lattice Fz.

:. Main theorems. Let be a lattice-isomorphism from Fx onto
Ft. Then n()=n(A)) for all e Fx. In fact, writing --{A,
.., An} where n--n(), and putting={X} and

={A,...,A_, vA} i=2, .,n,

.-.<.-< --<,.A-,.,
and n()--i. As f is a lattice isomorphism,

()-<(M)... <(4) (M),
():/:(+1) and n(())<n((+l)) i=1 n--1.

Hence we have n(4)_<n(()), and the inverse inequality is clear, as- is also a lattice-isomorphism.
If X is a two-point-set, and the probability measure on it is p

=(1/2, 1/2), then we call it a trivial case.
Theorem 1. For any entropy preserving lattice-isomorphism

from Fx onto Fr, there exists an isometrical isomorphism M from the
measure algebra ) onto , with M {MA, ., MAn} for any
4={A, ..., A} e F.

Proof. First, let us show the following facts" there exists a map-
ping M from : onto ] satisfying 1 -{MA,MA} for ={A, A}
e/x, 2 M()=(M), for any ft. e :, 3 g2 (., 2 e)M
<_MA2, 4 B<_B2(B, B2 e )M-BI<_M-B2, and 5 p(A)=q(MA) for
any A e .

For Ae with O(p(A)4l/2,_ putting~ 4={A,A},_A is two
atomic and can be written by 4-{B, B} for some B e . Then we
get p(A)=q(B)or p(A)=q(B), because the isomorphism is entropy
preserving. Assuming the former case, we define the mapping M by
MA--B, and assuming the latter, MA=B. We can also define the
mapping M for Ae with 1/2(p(A)l by MA={M(Ac)}, as

we get
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0<p(A)<I/2. Setting MX=Y and Mqfx=r (z is the empty set in
Z), we have defined the mapping M from

x={A e 2" p(A) :/: 1 / 2} onto r {B e q]" q(B) :/: 1 / 2}.
The conditions 1, 2 and 5 re clear on x from the definition of M.

Now let us prove 3 on x" let A<_A (A,:/=A) with p(A)<l/2.
If q(MA\MA)>O, then q(MAAMA)>O. Because if q(MAAMA)
=0, then putting a=q(MA), b-q(MA), and putting -{A,A} and
fl.-- {A, A}, we get

H(V)=--a log a--(b--a) log (b--a)--(1--b) log (1-- b),
and

H(f,V.) -a log a--b log b--(1--b--a) log (1- b-a).
As the function

f(x) (b a) log (b--a)--(1--b) log (1--b)+ b log b

+ (1- b--x) log (1--b--x)
is negative valued for x < b < 1, we see

H(/)<U(q/(f)=U((k/)),
which contradicts the fact that is entropy preserving. Hence
q(MAM)>O, and then n(V) 3 and n(V) 4, which
is also a contradiction. Therefore MAgMA. If AgA with
0<p(,)<l/2 and 1/2<p(), then we can also conclude that

MgM by the similar method of the former case. Ifg with
1/2<p(), then considering the complements of and , we also
have M,gM. The condition 4 or with, er ollows
similarly replacing by - and taking the mapping N from r onto
x instead of M and rom the fact N=M-.

Now let us extend M to the outside of x. For A ex (i.e.,
p()--l/2), if there exists ’ex with z’g, then writting

{, },’--{’, ’} and-{,}, we get M’ or M’ ,
because n(V’)--n(V’). If M’g, then we set M=,
and M= if M’. This is well defined. Because
and another " ex withx "g and M"gc exists, then we can
see ’"= and ’A"=x. As ’V" implies ’V"
and M’, M"gM(’V")g or , which is a contradiction. And
as implies M(’A")gM(’)g and M(’A’)gM(")
g, which is a contradiction. So’V"= and ’A"-x, which
however contradict to the act that preserves the number of atoms.
Therefore M is well defined or such A ex.

For ex which has no non-empty subsets belonging to
we can assume that has some non-empty subset in x, because"

is also an atom, then 2 is two-atomic and for such spaces Theorem
trivially consists without the uniqueness of M. Hence we define MA
by (MA) in this case.
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In the next stage, let us show that the extended mapping M saris-
ties the conditions 15 on all over . The conditions 1, 2 and 5
are clear. 3. If A<_A with A e x and A e :\x then MA<_MA
is clear, and if A e\ and A e z, then A<_A and MA<_MA
implies MA<_MA. 4. For - we extend the mapping N to
and we also see that N----M-.

Now every A e Fx is the least upper bound of some two-atomic
partitions 4, ..., 4, and so,

(MI)V... V(M) M(M1V... Vd)
For the proof of uniqueness of M, if g induces another such map-

ping M’, then MA--M’A is clear for A e x, and for A e \x, which
is also clear from the definition of M, excepting the trivial case of two
atomic space. Q.E.D.

For two dynamical systems (X, :, p, S) and (Y, q], q, T), where S
and T are invertible measure preserving transformations on X and Y
respectively, they are conjugate (cf. [1]) iff there exists an isometrical
isomorphismM from 5(: onto and MSA-TMA for every A e _. The
transformations S and T can be recognized as an entropy preserving
lattice-automorphisms on Fx and Fr respectively. Then the triplets
(/x, H, S) and (r, H, T), where H is the entropy function, are said to
be isomorphic as AD-systems iff there exists an entropy preserving
lattice isomorphism from Fx onto Fr, and S4=T4 for every

4 e Fz. We get"
Theorem 2. The systems (Fx, H, S) and (Fr, H, T) are isomophic

as AD-systems if and only if (X, 2?, p, S) and (Y, q], q, T) are conjugate,
excepting the trivial case.

Proof. The "if" part is clear. We assume that there exists an
entropy preserving lattice isomorphism (f from Fz onto Fr, and pS4
T for every . e/Ox. Then Theorem 1 tells us that there exists a

mapping M induced by ?, and MS-TM ( e Fx). Now @--MS
TM is again an entropy preserving lattice isomorphism from Fx onto

r, and both MS and TM are the versions of @ as the induced mappings
from : onto 1. Hence uniqueness of the induced mapping shows that
MS’I-TMI for every fi_ e :. Q.E.D.

Corollary. If (X,:, p) and (Y, , q) are the abstract Lebesgue
spaces, then the dynamical systems (X,:, p,S) and (Y, q], q, T) are
isomorphic iff (Fx, H, S) and (Fr, H, T) are isomorphic as AD-systems,
excepting the trivial case.
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