23. Approximate Propervalues and Characters of C*-algebra

By Isamu KASAHARA*) and Hiroshi TAKAI**)

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1972)

1. Introduction. Recently, Bunce [2] established a kind of reciprocity among the characters of singly generated C^* -algebras and approximate propervalues of the generators. He proved, among others, the following theorem:

Theorem 1. If A is a hyponormal operator acting on a Hilbert space \mathfrak{G} and λ is an approximate propervalue of A, then there is a character ϕ on the C*-algebra \mathfrak{A} generated by A (and 1) such that (1) $\phi(A) = \lambda$.

In the above theorem, a *character* means a multiplicative state of \mathfrak{A} . A state ϕ is a positive linear functional on \mathfrak{A} with $\phi(1)=1$, and ϕ is *multiplicative* if

(2) $\phi(AB) = \phi(A)\phi(B),$

for every $A, B \in \mathfrak{A}$.

Bunce [2] also proved the following theorem which is originally established by Arveson:

Theorem 2. If λ is a spectre of A with $|\lambda| = ||A||$, then there is a character ϕ on \mathfrak{A} which satisfies (1).

In the present note, we shall show that a kind of approximate propervalues has a closed connection with the characters of singly generated C^* -algebras. As consequences, the above mentioned theorems of Arveson and Bunce are proved under a unified method.

2. Normal approximate propervalues. In this note, we shall mean an operator A is a bounded linear operator acting on \mathfrak{F} . Following after Halmos [4], we shall call a complex number λ is an approximate propervalue of A provided that λ and A satisfy

$$\|Ax_n - \lambda x_n\| \to 0 \qquad (n \to \infty)$$

for a sequence $\{x_n\}$ of unit vectors. Furthermore, if λ and A satisfy (3) and

 $||A^*x_n - \lambda^*x_n|| \to 0 \qquad (n \to \infty),$

then λ is called a normal approximate propervalue of A (in [7], λ is called an approximate *reducing* propervalue). By the spectral theorem, we can see that every spectre of a normal operator is a normal approximate propervalue.

^{*)} Momodani Senior Highschool, Osaka.

^{**)} Department of Mathematics, Osaka Kyoiku University.

Let us denote by $\pi(A)$ the set of all approximate propervalues of A and call it the *approximate spectrum* of A which is a nonvoid compact set in the plane. Similarly, we can define the *normal approximate spectrum* as the set of all normal approximate propervalues of A. Unfortunately, there is an operator which has void normal approximate spectrum, as proved by Halmos [5]. However, Stampfli [7] established that the class \bar{R}_1 of all operators having non-void normal approximate spectra coincides with the closure of all operators with a one-dimensional reducing subspace. He also proved that \bar{R}_1 contains all hyponormal operators, compact operators and Toeplitz operators.

Our main result in this note is the following theorem:

Theorem 3. If λ is a normal approximate propervalue of A, then there is a character ϕ on the C*-algebra \mathfrak{A} generated by A and 1 which satisfies (1).

Proof. (3) implies at once there is a sequence $\{P_n\}$ of projections satisfying

(4) $||(A-\lambda)P_n|| \rightarrow 0$ $(n \rightarrow \infty)$ and (4*) $||(A-\lambda)*P_n|| \rightarrow 0$ $(n \rightarrow \infty)$. For example, put $P_n = x_n \otimes x_n$ where (4) $(x_n \otimes x_n)x = (x \mid x_n)x_n$. Let \mathfrak{F} be the set of all operators in \mathfrak{A} satisfying $||BP_n|| \rightarrow 0$, $(n \rightarrow \infty)$. We can easily conclude that \mathfrak{F} is a proper left ideal of \mathfrak{A} . Hence by [3; § 2] there is a pure state ϕ of \mathfrak{A} which satisfies (6) $\mathfrak{F} \subset \ker \phi$,

where ker $\phi = \{C \in \mathfrak{A} \mid \phi(C^*C) = 0\}.$

Now we are in the position to tail the proof of Bunce [2; Proposition 9]. By (6), we have $\phi(A) = \lambda$ and $\phi(A^*) = \lambda^*$. Moreover we have $\phi(BA) = \phi(B)\lambda = \phi(B)\phi(A)$

and

 $\phi(BA^*) = \phi(B)\lambda^* = \phi(B)\phi(A^*)$

for every $B \in \mathfrak{A}$. If $p(A, A^*)$ is a polynomial in A and A^* , we have $\phi(p(A, A^*)) = p(\phi(A), \phi(A^*)).$

Since the polynomials in A and A^* are dense in \mathfrak{A} , we can conclude that ϕ is a character of \mathfrak{A} .

3. Applications. We shall prove here Theorems 1 and 2.

Theorem 1 is clear by Theorem 3 and the following theorem which is due to Berberian [1]:

Theorem 4. If A is hyponormal, then every approximate propervalue is normal.

Proof. A is hyponormal if $AA^* \leq A^*A$. Hence we can easily

No. 2]

deduce that $A - \lambda$ is hyponormal too and $||A^*x|| \leq ||Ax||$ for every $x \in \mathfrak{H}$. Hence if $\{x_n\}$ satisfies (3), then we have

 $\|(A-\lambda)^*x_n\| \leq \|(A-\lambda)x_n\| \to 0 \qquad (n\to\infty),$

so that (3) is satisfied. Therefore λ is normal.

Theorem 2 is a consequence of Theorem 3 and the following known theorem, cf. [7]:

Theorem 5. If λ is a spectre of A with $|\lambda| = ||A||$, then λ is a normal approximate propervalue.

Proof. We need the following known fact: $\lambda \in \sigma(A)$ and $|\lambda| = ||A||$ imply $\lambda \in \pi(A)$, cf. [4; Problem 63] and [6]. Suppose that $\{x_n\}$ is a sequence of unit vectors satisfying (3). Then we have

 $\|(A-\lambda)x_n\|^2 = \|Ax_n\|^2 - 2\operatorname{Re} \lambda^*(Ax_n|x_n) + |\lambda|^2 \to 0 \qquad (n \to \infty).$ On the other hand, we have

$$|(Ax_n | x_n) - \lambda(x_n | x_n)| \leq ||x_n|| ||Ax_n - \lambda x_n|| \to 0 \qquad (n \to \infty).$$
 Hence we have

$$||(A-\lambda)^*x_n||^2 = ||A^*x_n||^2 - 2\operatorname{Re}\lambda(A^*x_n|x_n) + |\lambda|^2$$

$$\leq |\lambda|^2 - 2\operatorname{Re}\lambda(Ax_n|x_n)^* + |\lambda|^2 \rightarrow 2|\lambda|^2 - 2|\lambda|^2 = 0$$

(n \to \infty).

Therefore λ is a normal approximate propervalue.

Remark. We can relax the hypothesis of Theorem 2. If $\lambda \in W(A)$ and $|\lambda| = ||A||$, then λ is a normal approximate propervalue of A, where W(A) is the numerical range of A defined by

$$W(A) = \{(Ax \mid x) \mid ||x|| = 1\}.$$

This follows from a theorem of Wintner-Hilbert-Orland which states that $\lambda \in W(A)$ and $|\lambda| = ||A||$ imply $\lambda \in \pi(A)$, cf. [6]. Hence, Theorem 2 becomes: If $\lambda \in W(A)$ and $|\lambda| = ||A||$, then there is a character ϕ on \mathfrak{A} which satisfies (1).

References

- S. K. Berberian: A note on hyponormal operators. Pacif. J. Math., 12, 1171-1175 (1962).
- [2] J. Bunce: Characters on singly generated C*-algebras. Proc. Amer. Math. Soc., 25, 297-303 (1970).
- [3] J. Dixmier: Les C^* -algebres et leurs Representations. Gauthier-Villars, Paris (1964).
- [4] P. R. Halmos: A Hilbert Space Problem Book. Van Nostrand, Princeton (1967).
- 15] ----: Irreducible operators. Mich. Math. J., 15, 215-223 (1968).
- [6] R. Nakamoto and M. Nakamura: A remark on the approximate spectra of operators (to appear).
- [7] J. G. Stampfli: On hyponormal and Toeplitz operators. Math. Ann., 183, 328-336 (1969).