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1. Introduction. Let G be a non-discrete locally comapct abelian
group with the dual group I" of G. We will denote by M(@) the Banach
algebra of all bounded regular Borel measures on G under convolution
multiplication. If g,ve M(G), then their convolution product will be
denoted p+xv. We shall use additive notation for the group operation
in G.

If u,ve M(®), then “v<” will mean “y is absolutely continuous
with respect to ¢’ and “p_| v’ will mean “x and v are mutually singular”.
If I is a closed subspace (subalgebra, ideal) of M(G) will be called an
L-subspace (L-subalgebra, L-ideal) provided pe IN,ve M(G) and vy
imply ve M. If M is an L-subspace and u e M(G), then we say p| M
provided g | v for each ve M. We set ML={pe M(G): x| M}.

It is known that there exists a compact commutative topological
semigroup S with identity and an order preserving isometric isomor-
phism 6 of M(@) into M(S) such that:

T-(a) the image of M(G) in M(S) is weak-+ dense:

T-(b) each multiplicative linear functional b on M(G) has the form

h(;z):J fdlu for some non-zero continuous semicharacter on S;
S

T-(c) there are enough non-zero continuous semicharacter on S to
separate points; and

T-(d) of peM(GQ), ve M(S) and v< 0y then there is o measure
o € M(G) such that o< p and o=y (cf. [2]).

We call S the structure semigroup of M(G). The space of all non-
zero continuous semicharacters on S is denoted by S. We may consider
S to be the maximal ideal space of M(G), if we define the Gelfand trans-

form of pe M(G) by A( f)=L fdou for fe S, and give § the weakest

topology under which all of the functions g for y € M(G) are continuous.
Since M(G) has identity, Sisa compact semigroup under pointwise
multiplication. Pointwise multiplication is not generally continuous in
the Gelfand topology. However, for fixed g € S it is easily seen that the
map f—gf is weakly continuous. We may consider I" to be the maxi-
mal group at identity. In other word, I'={feS:|f|=1}. As well
known, if pe M(G) and 4(f)=0 for all f e I', then 4=0.
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We denote by 4 the subset of S consisting of functionals symmereic
in the sense that 2*(f)=pA(f) for any pe M(G), where % denotes the
usual involution on M(G). Let (S \D={pe M(G): p(f/)=0 for all
fes \d}. J. H. Williamson showed the following result ([4]). “Sup-
pose pe 92(§\A) and p=m+w, where p, is atomic and p, continuous.
Then sup| (/)] <sup|,(/)].”

fes fes

The main purpose of this paper is to show that if p e §R(§\A), then
u s a continuous measure of M(G).

We give some preliminaries in § 2. In § 3, we investigate L-ideals
of M(G). In §4, we prove, using the result of §3, that n(S \4) is an
L-ideal of M(G), in particular (S \ DT My(G), where M (G) is an L-
ideal of all continuous measures on G.

2. Preliminaries. The following proposition follows directly
from the Lebesgue decomposition theorem.

Proposition 1. If M is an L-subspace of M(G), then so is M+ and
M(G)=MDM-.

Let MM be an L-ideal of M(G) which is not contained in M (G).
Since I is an L-ideal, there is an element # of G such that J,, where
0, is a unit mass concentrated at a point x, is an element of . From
that I is an L-ideal of M(G), 0,=0,%0_, is an element of IN. Thus,
M=M(G). Hence, we have the following proposition.

Proposition 2. Ewery proper L-ideals of M(G) are contained in
M (G).

Definition 1. If I is an L-ideal of M(G) and M+ is a subalgebra,
then I will be called a prime L-ideal.

Definition 2. Anideal J of S, such that S\J is a subsemigroup of
S, will be called a prime ideal.

For f eS8, let J(f)={seS: f(8)=0}, then J(f) is a prime ideal of
S. Put R(f)={ne M(G): 6 is concentrated on J(f)}, then N(f) is a
prime L-ideal of M(G).

The following theorem is showed by J. L. Taylor.

Theorem 1 (J. L. Taylor [2]). If IN is a proper L-subspace of
M(@), then the following statements are equivalent:

(a) M is a prime L-ideal ;

(b) there is an idempotent semicharacter w e S such that M

= e M@ [ na01ui=0};

(¢) there is a semicharacter f e S such that M=N(f);

(d) there is an open compact prime ideal J of S such that N
={p e M(G): Oy is concentrated on J}.

The following proposition follows from T-(d) in § 1.

Proposition 3. If pe M(G) and ge§, then there is a measure
U € M(G) such that dfp,= gdop.
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3. L-ideals. Definition 3. A subset 4 of S, such that f-Ac4
for every f eI, will be called a I'-invariant set.

Theorem 2. Let I be an L-subspace of M(G). If A)={f ¢ S:
2()=0 for all e M}, then ASN) is a closed ideal of S.

Proof. It is obvious that A(IR) is closed. Since I is an L-sub-
space, if ge $ and pze M, then g, e M. Thus, if geS and f e AM),
then

jsfg dop= Isfdﬂpg =0
for all pe M. It follows that fg e AGMN). Thus, A(M) is a closed ideal
of S. The thAeorem is proved.
For fe S, let S(f)=S\J(f), and let (Bu)s, be the restriction to
S(f) of 6y for pe M(G). If ge I, then

[ gdou,=( grdou={ ard@msc.

Thus, we have the following lemma.

Lemma 1. If pe M(G) and f e S, then p,=01if and only if (Op)s s
=0.

For any subset 4 of S, we set R(A)={x e M(G): 4(f)=0 for every
fed}.

Theorem 3. If A is a I'-invariant subset of S, then N(A) is an
L-ideal of M(G). In particular, if A is non-empty, then N(A)C M (G).

Proof. Since 4 is I'-invariant, if f € 4 and u € %(4), then

I gdﬂ#ﬁj 9/dop=0
S 8

for all geI’. Thus, from the uniqueness of Fourier-Stieltjes trans-

form, 6p,;=0. It follows from Lemma 1 that 6y is concentrated on J(f)

for all fe A. Hence, if we put J(A)= ﬂAJ(f) and MI (D)) ={pxe M(G):
f€

6y is concentrated on J(A)}, then N(HCTMI(M). Conversely, if
pre MJ (), then

A= Fap=0

for all fe 4, Thus, pe N(A). Hence, it follows that N(A)=M(J(1)).
Futhermore, since M(J(4)) is an intersection of prime L-ideals, R(A)
is an L-ideal of M(G). Since a measure w ¢ 6(M4(G)), where M,(G) is
the subspace of all discrete measures on G, is concentrated on S(f) for
any fe S (1)), from Proposition 2, if 4 is non-empty, then N(A) C M (G).
This completes the proof.

Corollary. A measure p on G is continuous if and only if g
vanishes on some non-empty I'-invariont subset of S.

Corollary. Let A be a I'-invariant subset of S. If 4] is a
smallest closed ideal of S which contains A, then N(A)=N{A]), in other
word, if pe N(A), then f(f)=0 for every f e [4].
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4. Application. (1) Let M, (G) be the subalgebra of M(G) con-
sisting of all measures whose Fourier transform vanishes on I'\I". In
view of that for fixed g ¢ S the map f—g/f is continuous, I'\I" is I'-
invariant. Thus, the next theorem is followed.

Theorem 5. M(G) is an L-ideal of M(G).

(2) From now, we shall investigate the subalgebra HE \4D.

Lemma 2. If A1is a [-invariant subset of S, then so is S \4.

Proof. Suppose that there is a semicharacter g e §\A such that
fged for some fel'. Since fel and |f|=1, we have that ffg
=g e 4. Thisis impossible. Thus, §\/1 is I'-invariant. This completes
the proof.

Lemma 3. 4 is a I'-invariant set of S.

Proof. At first, we shall show that if feI" and pe M(G), then
do(u)*= fdop*. Since gf el for every gel,

J‘Sgdﬁ(/,zf)* :Isgdﬁ/xf :Jsgfdﬁyzjsgfdﬂp*.
Thus, in view of the uniqueness of Fourier-Stieltjes transform, df(y,)*
=fdoy*. If fel and ge 4, then

j sfgdﬁ/jk :I sgdﬁ(w)* - I sgdﬁﬂf - .[ sgfdaﬂ'

Thus, fg e 4. This completes the proof.

Theorem 4. N(S\4) is an L-ideal of M(@). In particular, R(S\4)
C M (G).

Proof. From Lemma 2 and Lemma 3, §\A is ['-invariant. Thus,
N(S\4) is an L-ideal of M(G). As well known, since G is non-discrete,
S \4 is non-empty. Thus, from Theorem 3, 9?(§\A)CMC(G). The
theorem is proved.

If 9% is a subset of M(®) such that pe I implies p* ¢ N, then M
will be called symmetric.

Lemma 4. If = is an idempotent of S, then the following state-
ments are equivalent:

(a) = 1is an element of 4;

®) N(x) is a symmetric prime L-ideal of M(G).

Proof. Suppose that there is a measure pe 9(x) such that
p* & N(x). Then, (Bp*)s, is a non-zero measure of M(S). From T-(d),
there is a measure o € M(G) such that dw*=(Or*)s,, and o<y Then,
it follows that

6*1) = [ #ddjo¥|=|0*| @>O.
On the other hand, since o<y, |coSl e N(m). It follows that
|ca|(n)=j df|w|=0.
Therefore, n¢ 4. Hence, (a) implsies (b). Suppose that N(x) is sym-
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metric. For any pu e M(G), let p=p, + 1., where p, € N(z) and g, € N(x)*.
Since N(x)L is also symmetric, we have that

() :Isﬂdﬁp* - j o, 0=t (@

=m(G) = J‘S(n) dop,= Lndﬁ/z =i(r).

Thus, r € 4. Hence, (b) implies (a). This completes the proof.

The following theorem follows directly from this lemma.

Theorem 5. If M is a non-symmetric prime L-ideal of M(G),
then NS\ A M.

If M is a non-symmetric prime L-ideal of M(G), then so is P*,
where M*={p* e M(G): p e M}. Thus, if I is a prime L-ideal of M(G)
such that ETE(§\A)C§D%, then S?(§\A)C§IR*. Thus, we have the following
fact as the corollary to Theorem 5.

Corollary. If peR(S\4), then p* e N(S\A).

Theorem 6. Let H be a non-open closed subgroup of G. Let A
be a collection of all countable unions of cosets of H. If M(Y) is a
closed subalgebra of M(G) consisting of all measures that are concen-
trated on A. Then, N(S\4)C M(A)*.

Proof. Let S, be the maximal ideal space of M(G/H). Since G/H
is non-discrete, there is a non-symmetric multiplicative linear func-
tional f, on M(G/H). If @ is a canonical homomorphism of M(G) onto
M(G/H), then there is a continuous injection mapping « of S, into S

such that p(« f):/@x( f) for fe S, and r e M(G). Since @ maps M(G)
onto M(G/H), af, is a non-symmetric multiplicative linear functional
on M(G). Suppose that R(S\AH&M@)L. Since R(S\4) is an L-ideal,
ER(§\A)F|M(?I);&{O}. Clearly, R(S\HNM(Y) is an L-ideal of M(G).
Thus, there is a positive measure g, of 92(§\A) with norm 1 whose
support lies in H. Then, it follows that @(y,) is identity of M(G/H).

Therefore, )« f0)=¢/y\0( f)=1. This is impossible. Thus R($\4)
CM@)L. The theorem is proved.
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