42. L-ideals of Measure Algebras

By Tetsuhiro SHIMIZU

Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kinjirô KUNUGI, M. J. A., March 13, 1972)

1. Introduction. Let G be a non-discrete locally comapct abelian group with the dual group Γ of G. We will denote by M(G) the Banach algebra of all bounded regular Borel measures on G under convolution multiplication. If $\mu, \nu \in M(G)$, then their convolution product will be denoted $\mu * \nu$. We shall use additive notation for the group operation in G.

If $\mu, \nu \in M(G)$, then " $\nu \ll \mu$ " will mean " ν is absolutely continuous with respect to μ " and " $\mu \perp \nu$ " will mean " μ and ν are mutually singular". If \mathfrak{M} is a closed subspace (subalgebra, ideal) of M(G) will be called an *L*-subspace (*L*-subalgebra, *L*-ideal) provided $\mu \in \mathfrak{M}, \nu \in M(G)$ and $\nu \ll \mu$ imply $\nu \in \mathfrak{M}$. If \mathfrak{M} is an *L*-subspace and $\mu \in M(G)$, then we say $\mu \perp \mathfrak{M}$ provided $\mu \perp \nu$ for each $\nu \in \mathfrak{M}$. We set $\mathfrak{M}^{\perp} = \{\mu \in M(G) : \mu \perp \mathfrak{M}\}$.

It is known that there exists a compact commutative topological semigroup S with identity and an order preserving isometric isomorphism θ of M(G) into M(S) such that:

T-(a) the image of M(G) in M(S) is weak-* dense:

T-(b) each multiplicative linear functional h on M(G) has the form

 $h(\mu) = \int f d\theta \mu$ for some non-zero continuous semicharacter on S;

T-(c) there are enough non-zero continuous semicharacter on S to separate points; and

T-(d) if $\mu \in M(G)$, $\nu \in M(S)$ and $\nu \ll \theta \mu$ then there is a measure $\omega \in M(G)$ such that $\omega \ll \mu$ and $\theta \omega = \nu$ (cf. [2]).

We call S the structure semigroup of M(G). The space of all nonzero continuous semicharacters on S is denoted by \hat{S} . We may consider \hat{S} to be the maximal ideal space of M(G), if we define the Gelfand transform of $\mu \in M(G)$ by $\hat{\mu}(f) = \int_{S} f d\theta \mu$ for $f \in \hat{S}$, and give \hat{S} the weakest topology under which all of the functions $\hat{\mu}$ for $\mu \in M(G)$ are continuous. Since M(G) has identity, \hat{S} is a compact semigroup under pointwise multiplication. Pointwise multiplication is not generally continuous in the Gelfand topology. However, for fixed $g \in \hat{S}$ it is easily seen that the map $f \rightarrow gf$ is weakly continuous. We may consider Γ to be the maximal group at identity. In other word, $\Gamma = \{f \in S : |f| \equiv 1\}$. As well known, if $\mu \in M(G)$ and $\hat{\mu}(f) = 0$ for all $f \in \Gamma$, then $\mu = 0$. We denote by Δ the subset of \hat{S} consisting of functionals symmetric in the sense that $\hat{\mu}^*(f) = \overline{\hat{\mu}(f)}$ for any $\mu \in M(G)$, where * denotes the usual involution on M(G). Let $\Re(\hat{S} \setminus \Delta) = \{\mu \in M(G) : \hat{\mu}(f) = 0 \text{ for all} f \in \hat{S} \setminus \Delta\}$. J. H. Williamson showed the following result ([4]). "Suppose $\mu \in \Re(\hat{S} \setminus \Delta)$ and $\mu = \mu_1 + \mu_2$, where μ_1 is atomic and μ_2 continuous. Then $\sup_{f \in \hat{S}} |\hat{\mu}_1(f)| < \sup_{f \in \hat{S}} |\hat{\mu}_2(f)|$."

The main purpose of this paper is to show that if $\mu \in \mathfrak{N}(\hat{S} \setminus \Delta)$, then μ is a continuous measure of M(G).

We give some preliminaries in §2. In §3, we investigate *L*-ideals of M(G). In §4, we prove, using the result of §3, that $\mathfrak{N}(\hat{S} \setminus \Delta)$ is an *L*-ideal of M(G), in particular $\mathfrak{N}(\hat{S} \setminus \Delta) \subset M_{\mathcal{C}}(G)$, where $M_{\mathcal{C}}(G)$ is an *L*ideal of all continuous measures on *G*.

2. Preliminaries. The following proposition follows directly from the Lebesgue decomposition theorem.

Proposition 1. If \mathfrak{M} is an L-subspace of M(G), then so is \mathfrak{M}^{\perp} and $M(G) = \mathfrak{M} \oplus \mathfrak{M}^{\perp}$.

Let \mathfrak{M} be an *L*-ideal of M(G) which is not contained in $M_{\mathcal{C}}(G)$. Since \mathfrak{M} is an *L*-ideal, there is an element x of G such that δ_x , where δ_x is a unit mass concentrated at a point x, is an element of \mathfrak{M} . From that \mathfrak{M} is an *L*-ideal of M(G), $\delta_0 = \delta_x * \delta_{-x}$ is an element of \mathfrak{M} . Thus, $\mathfrak{M} = M(G)$. Hence, we have the following proposition.

Proposition 2. Every proper L-ideals of M(G) are contained in $M_c(G)$.

Definition 1. If \mathfrak{M} is an *L*-ideal of M(G) and \mathfrak{M}^{\perp} is a subalgebra, then \mathfrak{M} will be called a prime *L*-ideal.

Definition 2. An ideal J of S, such that $S \setminus J$ is a subsemigroup of S, will be called a prime ideal.

For $f \in \hat{S}$, let $J(f) = \{s \in S : f(s) = 0\}$, then J(f) is a prime ideal of S. Put $\mathfrak{N}(f) = \{\mu \in M(G) : \theta\mu \text{ is concentrated on } J(f)\}$, then $\mathfrak{N}(f)$ is a prime *L*-ideal of M(G).

The following theorem is showed by J. L. Taylor.

Theorem 1 (J. L. Taylor [2]). If \mathfrak{M} is a proper L-subspace of M(G), then the following statements are equivalent:

(a) \mathfrak{M} is a prime L-ideal;

(b) there is an idempotent semicharacter $\pi \in \hat{S}$ such that $\mathfrak{M} = \left\{ \mu \in M(G) : \int_{S} \pi d\theta \, |\, \mu| = 0 \right\};$

(c) there is a semicharacter $f \in \hat{S}$ such that $\mathfrak{M} = \mathfrak{N}(f)$;

(d) there is an open compact prime ideal J of S such that $\mathfrak{M} = \{\mu \in M(G) : \theta \mu \text{ is concentrated on } J\}.$

The following proposition follows from T-(d) in §1.

Proposition 3. If $\mu \in M(G)$ and $g \in \hat{S}$, then there is a measure $\mu_g \in M(G)$ such that $d\theta \mu_g = g d\theta \mu$.

T. SHIMIZU

[Vol. 48,

3. L-ideals. Definition 3. A subset Λ of \hat{S} , such that $f \cdot \Lambda \subset \Lambda$ for every $f \in \Gamma$, will be called a Γ -invariant set.

Theorem 2. Let \mathfrak{M} be an L-subspace of M(G). If $\Lambda(\mathfrak{M}) = \{f \in \hat{S} : \mu(f) = 0 \text{ for all } \mu \in \mathfrak{M}\}$, then $\Lambda(\mathfrak{M})$ is a closed ideal of \hat{S} .

Proof. It is obvious that $\Lambda(\mathfrak{M})$ is closed. Since \mathfrak{M} is an *L*-subspace, if $g \in \hat{S}$ and $\mu \in \mathfrak{M}$, then $\mu_g \in \mathfrak{M}$. Thus, if $g \in \hat{S}$ and $f \in \Lambda(\mathfrak{M})$, then

$$\int_{s} fg d\theta \mu = \int_{s} f d\theta \mu_{g} = 0$$

for all $\mu \in \mathfrak{M}$. It follows that $fg \in \Lambda(\mathfrak{M})$. Thus, $\Lambda(\mathfrak{M})$ is a closed ideal of \hat{S} . The theorem is proved.

For $f \in \hat{S}$, let $S(f) = S \setminus J(f)$, and let $(\theta \mu)_{S(f)}$ be the restriction to S(f) of $\theta \mu$ for $\mu \in M(G)$. If $g \in \Gamma$, then

$$\int_{S} g d\theta \mu_{f} = \int_{S} g f d\theta \mu = \int_{S} g f d(\theta \mu)_{S(f)}.$$

Thus, we have the following lemma.

Lemma 1. If $\mu \in M(G)$ and $f \in \hat{S}$, then $\mu_f = 0$ if and only if $(\partial \mu)_{S(f)} = 0$.

For any subset Λ of \hat{S} , we set $\mathfrak{N}(\Lambda) = \{\mu \in M(G) : \hat{\mu}(f) = 0 \text{ for every } f \in \Lambda\}.$

Theorem 3. If Λ is a Γ -invariant subset of \hat{S} , then $\mathfrak{N}(\Lambda)$ is an *L*-ideal of M(G). In particular, if Λ is non-empty, then $\mathfrak{N}(\Lambda) \subset M_c(G)$.

Proof. Since Λ is Γ -invariant, if $f \in \Lambda$ and $\mu \in \mathfrak{N}(\Lambda)$, then

$$\int_{s} g d heta \mu_{f} = \int_{s} g f d heta \mu = 0$$

for all $g \in \Gamma$. Thus, from the uniqueness of Fourier-Stieltjes transform, $\theta \mu_f = 0$. It follows from Lemma 1 that $\theta \mu$ is concentrated on J(f)for all $f \in \Lambda$. Hence, if we put $J(\Lambda) = \bigcap_{f \in \Lambda} J(f)$ and $\mathfrak{M}(J(\Lambda)) = \{\mu \in M(G) : \theta \mu \text{ is concentrated on } J(\Lambda)\}$, then $\mathfrak{M}(\Lambda) \subset \mathfrak{M}(J(\Lambda))$. Conversely, if $\mu \in \mathfrak{M}(J(\Lambda))$, then

$$\hat{\mu}(f) = \int_{S} f d\theta \mu = 0$$

for all $f \in \Lambda$, Thus, $\mu \in \mathfrak{N}(\Lambda)$. Hence, it follows that $\mathfrak{N}(\Lambda) = \mathfrak{M}(J(\Lambda))$. Futhermore, since $\mathfrak{M}(J(\Lambda))$ is an intersection of prime *L*-ideals, $\mathfrak{N}(\Lambda)$ is an *L*-ideal of M(G). Since a measure $\omega \in \theta(M_d(G))$, where $M_d(G)$ is the subspace of all discrete measures on *G*, is concentrated on S(f) for any $f \in \hat{S}([3])$, from Proposition 2, if Λ is non-empty, then $\mathfrak{N}(\Lambda) \subset M_c(G)$. This completes the proof.

Corollary. A measure μ on G is continuous if and only if $\hat{\mu}$ vanishes on some non-empty Γ -invariant subset of \hat{S} .

Corollary. Let Λ be a Γ -invariant subset of \hat{S} . If $[\Lambda]$ is a smallest closed ideal of \hat{S} which contains Λ , then $\mathfrak{N}(\Lambda) = \mathfrak{N}([\Lambda])$, in other word, if $\mu \in \mathfrak{N}(\Lambda)$, then $\hat{\mu}(f) = 0$ for every $f \in [\Lambda]$.

4. Application. (1) Let $M_0(G)$ be the subalgebra of M(G) consisting of all measures whose Fourier transform vanishes on $\overline{\Gamma} \setminus \Gamma$. In view of that for fixed $g \in \hat{S}$ the map $f \rightarrow gf$ is continuous, $\overline{\Gamma} \setminus \Gamma$ is Γ -invariant. Thus, the next theorem is followed.

Theorem 5. $M_0(G)$ is an L-ideal of M(G).

(2) From now, we shall investigate the subalgebra $\Re(\hat{S} \setminus \Delta)$.

Lemma 2. If Λ is a Γ -invariant subset of \hat{S} , then so is $\hat{S} \setminus \Lambda$.

Proof. Suppose that there is a semicharacter $g \in \hat{S} \setminus \Lambda$ such that $fg \in \Lambda$ for some $f \in \Gamma$. Since $\bar{f} \in \Gamma$ and $|f| \equiv 1$, we have that $\bar{f}fg = g \in \Lambda$. This is impossible. Thus, $\hat{S} \setminus \Lambda$ is Γ -invariant. This completes the proof.

Lemma 3. Δ is a Γ -invariant set of \hat{S} .

Proof. At first, we shall show that if $f \in \Gamma$ and $\mu \in M(G)$, then $d\theta(\mu_f)^* = f d\theta \mu^*$. Since $gf \in \Gamma$ for every $g \in \Gamma$,

$$\int_{S} g d\theta(\mu_{f})^{*} = \overline{\int_{S} g d\theta \mu_{f}} = \overline{\int_{S} g f d\theta \mu} = \int_{S} g f d\theta \mu^{*}.$$

Thus, in view of the uniqueness of Fourier-Stieltjes transform, $d\theta(\mu_f)^* = f d\theta \mu^*$. If $f \in \Gamma$ and $g \in \Delta$, then

$$\int_{S} fg d\theta \mu^{*} = \int_{S} gd\theta (\mu_{f})^{*} = \int_{S} gd\theta \mu_{f} = \int_{S} gf d\theta \mu.$$

Thus, $fg \in \Delta$. This completes the proof.

Theorem 4. $\mathfrak{N}(\hat{S} \setminus \Delta)$ is an L-ideal of M(G). In particular, $\mathfrak{N}(\hat{S} \setminus \Delta) \subset M_c(G)$.

Proof. From Lemma 2 and Lemma 3, $\hat{S} \setminus \Delta$ is Γ -invariant. Thus, $\mathfrak{N}(\hat{S} \setminus \Delta)$ is an *L*-ideal of M(G). As well known, since *G* is non-discrete, $\hat{S} \setminus \Delta$ is non-empty. Thus, from Theorem 3, $\mathfrak{N}(\hat{S} \setminus \Delta) \subset M_c(G)$. The theorem is proved.

If \mathfrak{M} is a subset of M(G) such that $\mu \in \mathfrak{M}$ implies $\mu^* \in \mathfrak{M}$, then \mathfrak{M} will be called *symmetric*.

Lemma 4. If π is an idempotent of \hat{S} , then the following statements are equivalent:

(a) π is an element of Δ ;

(b) $\mathfrak{N}(\pi)$ is a symmetric prime L-ideal of M(G).

Proof. Suppose that there is a measure $\mu \in \mathfrak{N}(\pi)$ such that $\mu^* \notin \mathfrak{N}(\pi)$. Then, $(\theta \mu^*)_{S(\pi)}$ is a non-zero measure of M(S). From T-(d), there is a measure $\omega \in M(G)$ such that $\theta \omega^* = (\theta \mu^*)_{S(\pi)}$ and $\omega \ll \mu$. Then, it follows that

$$|\hat{\omega}^*|(\pi) = \int_{\mathcal{S}} \pi d\theta |\omega^*| = |\omega^*|(G) > 0.$$

On the other hand, since $\omega \ll \mu$, $|\omega| \in \mathfrak{N}(\pi)$. It follows that

$$|\hat{\omega}|(\pi) = \int_{S} \pi d\theta |\omega| = 0.$$

Therefore, $\pi \notin \Delta$. Hence, (a) implies (b). Suppose that $\mathfrak{N}(\pi)$ is sym-

T. SHIMIZU

metric. For any $\mu \in M(G)$, let $\mu = \mu_1 + \mu_2$, where $\mu_1 \in \mathfrak{N}(\pi)$ and $\mu_2 \in \mathfrak{N}(\pi)^{\perp}$. Since $\mathfrak{N}(\pi)^{\perp}$ is also symmetric, we have that

$$\hat{\mu}^*(\pi) = \int_S \pi d\theta \mu^* = \int_{S(\pi)} d\theta \mu^* = \mu_2^*(G)$$
$$= \overline{\mu_2(G)} = \overline{\int_{S(\pi)} d\theta \mu_2} = \overline{\int_S \pi d\theta \mu} = \overline{\mu(\pi)}.$$

Thus, $\pi \in \Delta$. Hence, (b) implies (a). This completes the proof. The following theorem follows directly from this lemma.

Theorem 5. If \mathfrak{M} is a non-symmetric prime L-ideal of M(G), then $\mathfrak{N}(\hat{S} \setminus A) \subset \mathfrak{M}$.

If \mathfrak{M} is a non-symmetric prime *L*-ideal of M(G), then so is \mathfrak{M}^* , where $\mathfrak{M}^* = \{\mu^* \in M(G) : \mu \in \mathfrak{M}\}$. Thus, if \mathfrak{M} is a prime *L*-ideal of M(G)such that $\mathfrak{N}(\hat{S} \setminus \Delta) \subset \mathfrak{M}$, then $\mathfrak{N}(\hat{S} \setminus \Delta) \subset \mathfrak{M}^*$. Thus, we have the following fact as the corollary to Theorem 5.

Corollary. If $\mu \in \mathfrak{N}(\hat{S} \setminus \Delta)$, then $\mu^* \in \mathfrak{N}(\hat{S} \setminus \Delta)$.

Theorem 6. Let H be a non-open closed subgroup of G. Let \mathfrak{A} be a collection of all countable unions of cosets of H. If $M(\mathfrak{A})$ is a closed subalgebra of M(G) consisting of all measures that are concentrated on \mathfrak{A} . Then, $\mathfrak{N}(\hat{S} \setminus \Delta) \subset M(\mathfrak{A})^{\perp}$.

Proof. Let \hat{S}_0 be the maximal ideal space of M(G/H). Since G/His non-discrete, there is a non-symmetric multiplicative linear functional f_0 on M(G/H). If Φ is a canonical homomorphism of M(G) onto M(G/H), then there is a continuous injection mapping α of \hat{S}_0 into \hat{S} such that $\hat{\mu}(\alpha f) = \widehat{\Phi} \mu(f)$ for $f \in \hat{S}_0$ and $\mu \in M(G)$. Since Φ maps M(G)onto M(G/H), αf_0 is a non-symmetric multiplicative linear functional on M(G). Suppose that $\Re(\hat{S} \backslash \Delta) \subset M(\mathfrak{A})^{\perp}$. Since $\Re(\hat{S} \backslash \Delta)$ is an *L*-ideal, $\Re(\hat{S} \backslash \Delta) \cap M(\mathfrak{A}) \neq \{0\}$. Clearly, $\Re(\hat{S} \backslash \Delta) \cap M(\mathfrak{A})$ is an *L*-ideal of M(G). Thus, there is a positive measure μ_0 of $\Re(\hat{S} \backslash \Delta)$ with norm 1 whose support lies in *H*. Then, it follows that $\Phi(\mu_0)$ is identity of M(G/H). Therefore, $\hat{\mu}_0(\alpha f_0) = \widehat{\Phi \mu_0}(f_0) = 1$. This is impossible. Thus $\Re(\hat{S} \backslash \Delta)$

References

[1] W. Rudin: Fourier Analysis on Groups. New York (1962).

 $\subset M(\mathfrak{A})^{\perp}$. The theorem is proved.

- [2] J. L. Taylor: The structure of convolution measure algebras. Trans. Amer. Math. Soc., 119, 150-166 (1965).
- [3] —: L-subalgebras of M(G). Trans. Amer. Math. Soc., 134, 105-113 (1969).
- [4] J. H. Williamson: Banach Algebra Elements with Idempotent Powers and Theorems of Winer-Pitt Type. Function Algebras, 186–197. Chicago (1966).