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64. On u—u,,—F(u,) and the Differentiability of
the Nonlinear Semi-Group Associated with it

By Yoshio KONISHI
Department of Mathematics, University of Tokyo

(Comm. by Ko6saku YOSIDA, M. J. A., May 12, 1972)

1. Introduction. Suggested by a problem which has to do with
the burning of gas in a rocket (see Forsythe and Wasow [4], p. 141),
we consider in the present paper the following problem:

ou __ou ou .

u(—m, t)=u(x,t) in (0, c0),
w@, 0)=u(x)  in (—=,n),
where F' is a continuous function on R!' such that F(0)=0. We shall
prove the existence and the uniqueness theorem® for solutions of (1.1)
by studying the differentiability of the nonlinear contraction semi-group
on C, [—r,r]C L>(—=, n), associated with (1.1), which is generated in
the sense of Theorem I of Crandall and Liggett [3]; here C,.[—r, =] is
the Banach space of all real-valued continuous functions f on [—=, n]
satisfying f(—n)=f(z), endowed with the norm | .|. induced by
L>(—=, n).

2. Our result reads:

Theorem. Assume that

1.1

@.1) ey P 6 O l—m, 7] and T ¢ Lo(—z, ).
dx dax?
Then the equation (1.1) has a unique solution u=u(x,t) such that
@2 w2 ecC0,00); Col—mal),  T%, %% ¢ Lo((—z, )% (0, 0));
ox ox* ot

where ou/ox, 0w /dx*, ou/dt denote the distribution derivatives of
ue P ((—r, )X (0, )).
3. The uniqueness. We set, for 1<p< oo,
p(fs g)=1sig1 e (1S +egll,— N Flp), fr 9 € LP(—m, m).”
Then, by Sato [14], § 6, we have
t(f,9)= max(sgn f(@)g®), f,9¢€Cyl—r,l, [0,

ze{z; | f(2d =11 Neo}

and, for 1<p<oco,

1) Another approach to a similar problem is seen, for example, in Kruzhkov
[12]1.
2) |- llp=ll"llzp(==,m.
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([, 9)= f (sgn f(@)|f@P'g@dz/| fI5™  f,9eL(—=,x), [f=0.
We shall need the following :

Lemma 1. Suppose that f,g ¢ C,.[—n,z]. Then
(8.1 lim ,(f, 9)<7.(f, 9).

p—roo
Proof. Without loss of generality, we can assume that || f||..=1.
We have

j_ (sgn f(x) | f(@) [P 'g(x)dx

= j (sgn f(@)g(@)da+ j (s @) | F@ P g(@)da
{z;1f ()| =1} {x;]f(®) <1}
< max (sen S@)g@)-p((a; |/ @)[=1+]g.- @) ide
ze{z;|f(x)|=1} {x; 1 f(x) <1}
and
171 =T | S @] =1+ | f @ pdal o=,
{z;1f(®)1<1}

where y is the Lebesgue measure on (—=r,x). Hence, by the bounded
convergence theorem, we have (3.1). Q.E.D.

Proof of Theorem (uniqueness). Let u® and u® be solutions of
(1.1) satisfying (2.2) with u=u®,u®. Note that, for 1<p< oo,

( uO(t) — u‘”(t) o uO () — o ‘2>(t)> <0 for a.a. t>0

(cf. Theorem 1 of Hasegawa [5D). Slnce uP(t) —u®(t) is strongly dif-
ferentiable in L?(—z,7) (1<p<oo) for a.a. t>>0, we have

_(;i_t H u(l)(t) _u(Z)(t) ”p

—c, (um(t) —u(), "“‘” t)— 5’2‘2 (t)) (ct. Lemma 1.3 of Kato [6])

(um(t) —uo(e), 2 T o (t)— u<2>(t))
+1, (u‘”(t)—u‘”(t), - (;; u“)(t)) +F( - u‘”(t)))

<Tp (u(l)(t)_u(z)(t), — ( u(l)(t)) +F( u(Z)(t)))
ox
for a.a. t>>0. Hence one obtains, for each ¢>0,
“u(l)(t)_u(2)(t) “p
<J‘trp (u(l)(s)_u(2)(s)’ — ( (1)(8)) +F ( a u<2)(s)>>
0 ox ox

and, letting p tend to infinity, by the Lebesgue-Fatou lemma and
Lemma 1

[u® (@) —u®@)].,
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<[00 [ Zae) o (L)

=0, t>0 (remember the form of z..,).
Consequently u®=u? in [—=r, 7] X [0, o). Q.E.D.
4. Existence. We define an operator 4 in C,.[—x, x]:
2,
D)={u; u, 3, S e C [z, ml},  Au=—TUyp (DL,
It is easily checked that A is accretive in C,.[—n, ] in the sense of
Kato [7]:
lu—v+2(Au—Av) ||, =|u—2|., for each >0, u, v e D(A)
(notice that z.(u—v, Au—Av)>0 for u,v e D(A)). Moreover we have
Proposition. The operator A defined above is m-accretive in
Cyl—n,zl. I.e. A is accretive and satisfies
(4.1) R(I+24)=C,,[—=,x] for each 2>>0.
The proof relies upon
Lemma 2. Suppose that
u,du/dx e Cp,l—n,z] and du/dx*e L*(—n=,n).

Set
h=u—du/dz*+ F(du/dx).
Then we have
| du/dz|..<2x| k...
Proof. It is easy to see that
(| du/da||.. <+ 2x || d*u/da?||,.
On the other hand, We have

=

’ dx?

o] foe 2 e () 2

2

1] du |?
=—| n%dxg<=|BIE+=
j_,, dxzdx 2HhH2+ da? |2
Thus
| d*u/dz? < || k< 2x | .. Q.E.D.

Let us introduce an operator 4 in C,.[—r, #]:

D)= {u; " Z’;‘ du

e Cyl—m, 71']} , Au=22,
dx
It is well known that A is the infinitesimal generator of a group of class
) on C, [ —=r,xl.
Proof of Proposition. The first step.® We shall prove (4.1) under
the additional assumption that F' is Lipshitz continuous:
sup M =L<oo.

—e<r<s<om |r—s]|

3) A similar technique is seen, for instance, in Yosida [16].
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Set 0<<2,<<1/4L% Since
U+ A Au=v+ A F (AT — 2,4)7v), u— A Lu=0,
for each u € D(A) and
| 2F (AU — 2,4~ 0,) — AF (AT — 2,4%)7',) ||
2LV X ||v,—,/l.. for v, w,e Cpl—r,xl,
we have
R(I+2,A)=C,[—m=,x],
from which follows (4.1) (see Lemma 2.1 of Kato [6]).

The second step. We shall prove (4.1) for general F. We only
have to prove (4.1) for =1 (Lemma 2.1 of Kato [6]). Let {F,},., be a
sequence of Lipshitz continuous functions F, on R' such that F,(0)=0,
which converges to F uniformly on any bounded interval of R'. By
the first step, for an arbitrarily fixed & € C,,[—n=, z], there exists {¢,}ns,
C D(A? satisfying

Uy — AUy, + F,(Au,) =h, n=1.
Since 4,v= — A*v + F,(4v) with D(4,) =D(4?, is accretive in C, [ —=, 7],
we have
nlle<l|blle,  n=1.
From Lemma 2 with F'=F, follows the estimate:
| A%y || < 27| P ||.os n>=1.
Thus we have
sup | AU [l oo <00

Accordingly there exists u ¢ D(A) such that, for some subsequence {n'}
of {n},
s-lim u,, =u, s-lim Au,. = Au

n’—oo n’ -0

exist in C,.[—=,z]. Moreover
s-lim Au,, =u+FAu)—h in C,l—r,x].

n’—o

Hence
ue D) and ALu=u-+F(Au)—h. Q.E.D.
We define an extension 4 of A in L*(—=, ):
~ . du du w
D)= {u u, % ¢ C,[—n,z] and e L*(—x, n')},
dx dax?

~ d*u du
Au—— F (_)
== T

A is aceretive in L=(—=, ) and, by Proposition, satisfies
R(I +24) DRI +24)=C,[—=, z1=D(4), 1>0.
Thus — A generates a nonlinear contraction semi-group {exp (—tﬁ)}t>0

on C,.[—m,z] in the sense of Theorem I of Crandall and Liggett [3]: for
heC,l—n,nxl,
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exp (—tA) - h=slim J+ 24 in C,l—r,zl,t>0.9
210

We shall show that % € C([0, o) ; C,.[—=, z]) given by
u(t)=exp (—tﬁ) Uy, 10,
is the solution mentioned in Theorem:.
Proof of Theorem (existence). We define an extension /4 of 4 in
Lo(—rm,7m):
DD ={u;ueCypl—n,z] and du/dxe L~(—n,n)}, /Tu:%.
One knows the estimates:
1T+ 28) g < ey AT+ 2D) 04, < ) Ay
for each 2>0 and ¢>0; hence by Lemma 2
AU+ 24) ", |, < 22(| [l +1| Ao ]l)  (=5)
and
I AAU + Zﬁ)‘[‘/”uonw < /iuu lloo + Ilnlix F(r).

Consequently u(t) e D(4),
s-lim A(I +2A) "y = Aut) in C,[—r, ]

210
and

wrlim AA(I +24) -y, = JAu(t) in L*(—r=,n)

210 A
for each t>0. Now letting 1 tend to 0 in the estimate due to Oharu
(see (8) in [13]):

(I + 2A) =ty — = — j A+ 2A)ou,ds +0()  strongly in L*(—r, 7),
we have, by the Lebesgoue’s theorem,
w(t) —uy= —~w*-rflu(s)ds in L*(—n=n,n),t>0,
i.e., by the weak* continuityoof tes Au(t) in L=(—=, ),
W*-%@L(lﬁ): _Au®) in L(—=,7),t>0. Q.E.D.

5. Remarks. D(A) coincides with what Crandall [2] calls the
“generalized domain” D(A) of A for our example.

— A is “0O-dispersive(s)” in L*(—=, z) in the sense of Konishi [9].
Hence {exp (-—tfi)},;o is an “order-preserving semi-group” (of type 0)
on C,[—=,z]. See also Sato [15].

6. Comment. Itis known (, for example, in Komura [8], Kato
[7], Crandall and Liggett [3]) that if 4 is an m-accretive (multi-valued)
operator in a reflexive Banach space, the semi-group {exp(—t.A)}.5, gen-
erated by — A gives the unique strong solution to the problem:

4) {exp(—tA)}¢>o coincides with {exp (—tA)}:»0, where, by definition,
exp (—tA)-h=s-lim (I +2A4)-t/h in Col[—x,x], t20, h e Cor[—n,7l.
210



286 Y. KoNISHI [Vol. 48,

%@ti(tndm(t) 50  a.a. te(0,00),

w(0)=1u, (e D(A));
(set u(t)=exp (—tA)-u,). Butitis notthe case in non-reflexive Banach
spaces and the complete general theory on the differentiability of
{exp (—t A}, has not been established yet. Thus it seems interesting
for us to study it case by case as in the present paper ; see also Crandall
[1] and Konishi [10, 11], where one will find the study in L' spaces.
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advice. They called my attention to the fact of Lemma 2 and this made
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u, such that u,, du,/dx, du,/dxz* € C,[—=, z].
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