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Department of Mathematics, University of Tokyo

(Comm. by KSsaku YOSIDA, M. . )., May 12, 1972)

1. Introduction. Suggested by a problem which has to do with
the burning of gas in a rocket (see Forsythe and Wasow [4], p. 141),
we consider in the present paper the ollowing problem"

u u u I- /--/ in (--, z) (0, ),
(1.1)

u(--z, t)=u(z, t) in (0, ),
u(x, O) =Uo(X) in (-- z, z),

where F is a continuous function on R such that F(O)=O. We shall
prove the existence and the uniqueness theorem) for solutions of (1.1)
by studying the differentiability of the nonlinear contraction semi-group
on C[-z, z]cL(--z, z), associated with (1.1), which is generated in
the sense o Theorem I of Crandall and Liggett [3]; here C[-z, z] is
the Banach space of all real-valued continuous unctions f on [--, ]
satisfying f(--z)=f(z), endowed with the norm []. I] induced by
L(--, ).

2. Our result reads:
Theorem. Assume that

duo L(_, ).(2.1) u0, e C[-z, ] and dUdx
Then the equation (1.1) has a unique solution u=u(x, ) such that

3u 3u 3u(2.2) u, e C([0, ) C[-u, u]), 3x --3 e L((--, ) (0, ))

where 3u/3x, 3u/3x,u/3t denote the distribution derivatives of
u e ’((-, ) (0, )).. The uniqueness. We set, or lp,

%(f, g) =lira -(f+eg]-f), f, g e L’(-z, ).)
0

Then, by Sato [14], 6, we have
r(f, g) max (sgn f(x))g(x), f, g C[-, ], f O,

x {x; [f(x)[=]f]]}

and, or 1p4,
1) Another approach to a similar problem is seen, for example, in Kruzhkov

[12].
2) II’II--II’IILP(....
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Tp(f g)--| (sgn f(x))]f(x)]P-lg(x)dx/Ifll -1, f,g e LP(--7, 70, f#O.
d-

We shall need the ollowing:

Lemma 1. Suppose that f, g e C.[-, 7]. Then
(3.1) lim r(f, g) < r(f, g).

Proof. Without loss o generality, we can assume that Ilfl --1.
We have

.I:(sgn f(x)) f(x)I-Ig(x)dx= (sgn f(x))g(x)dx+ (sgn f(x))lf(x)l-g(x)dx
{x; If(x) l=l} {x; If (x) <1}

< max (sgn f(x))g(x).z((x; If(x)l-1})/l gll. l If(x) -dx
x {x; If (x) =1} J{x; f (x) 1}

and

If(x) I-- 1})+f If(x)ldx](-/,
J{x;

where/ is the Lebesgue measure on (--u, u). Hence, by the bounded
convergence theorem, we have (3.1). Q.E.D.

Proof of Theorem (uniqueness). Let u(" and u() be solutions of
(1.1) satisfying (2.2) with u=u’, u. Note that, for lp,

(t)-- ((t) 0 for a.a. t> 0r u(1)(t)--u()(t),

(cf. Theorem I of Hasegawa [5]). Since u(i)(t)--U()(t) is strongly dif-
erentiable in L(--u, ) (lp) or a.a. t0, we have

dt
u(’(t)-u()(t) I1

U(1 U(2)

= u(’(t)--u()(t)’ 3t (t)--
3t

(t) (cf. Lemmal.3 of Kato [6])

+ , (u(l)(t)--u()(t), --F( u(l)(t)) +F

for a.a. tO. Hence one obtains, for each tO,
iu()(t)--u()(t)

and, letting tend to infinity, by the Lebesgue-Patou lemma and
Lemma 1

Ilu(1)(t)--u()(t) Iloo
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-----0, >0 (remember the form of r).
Consequently u) -u) in [-, u] [0, c). Q.E.D.

4. lxistence. We define an operator A in C[-=, ]"
du d2uec2[_z,z] Au= d2u (du)D(A)-- u u, --, dx--- dx-- +F

It is easily checked that A is accretive in C[-u, u] in the sense o
Kato [7]"

Ilu--v+(Au-Av)]l>[]u-v] or each O,u, veD(A)
(notice that r(u--v, Au-Av)>O for u, v e D(A)). Moreover we have

Proposition. The operator A defined above is m-accretive in
C2[-z, ]. I.e. A is accretive and satisfies
(4.1) R(I+A)--C[--z,z] for each

The proof relies upon
Lemma 2. Suppose that

u, du/dx e C[-, ] and du/dx e L(-, ).
Set

Then we have
h=u-du/dx+F(du/dx).

du/ dx 1[ 2 h [1.
Proof. It is easy to see that

On the other hand, we have

U--.dx +F - dx

Thus

h du dx< 1 1

du
Let us introduce an operator A in C[-z, z]"

D(A)-- , C.[-r, r] A-

Q.E.D

It is well known that A is the infinitesimal generator of a group of class
(Co) on C[-, ].

Proof of Proposition. The first step. 3) We shall prove (4.1) under
the additional assumption that F is Lipshitz continuous"

sup IF(r)- F(s) L c

3) A similar technique is seen, for instance, in Yosida [16].
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Set 0 .0 1/4L. Since
u+ ,oAu--v + ,oF(A(I--,oA)-v), u--,oAu-v,

or each u e D(A) and
,oF(A(I- ,oA)-v) ,oF(A(I- ,oA)-v) I1

2L/o v-- v[l for v, v e C[- r, ],
we have

R(I+ ,oA) C.[--, ],
from which ollows (4.1) (see Lemma 2.1 of Kato [6]).

The second step. We shall prove (4.1) for general F. We only
have to prove (4.1) or --1 (Lemma 2.1 o Kato [6]). Let (F}> be a
sequence of Lipshitz continuous functions F on R such that F(0)=0,
which converges to F uniformly on any bounded interval of R. By
the first step, or an arbitrarily fixed h e C[-u, ], there exists {u}>
D(A) satisfying

u-Au+F(Au)- h, n> 1.

Since Av-- Av +F(Av) with D(A) D(A), is accretive in C[-, ],
we have

l]Un [<]lh n> 1.
From Lemma 2 with F-----F ollows the estimate"

Au [I<2 h I1, n> 1.
Thus we have

sup Au I1 .
n>l

Accordingly there exists u e D(A) such that, or some subsequence {n’}
of {n},

s-lim Un,--u, s-lim Au,-Au

exist in C[-, u]. Moreover
s-lim Au,-u+F(Au)-- h in C[-u, u].

Hence
u e D(A) and Au-u+F(Au)-h. Q.E.D.

We define an extension A of A in L(--, )"

[ du e L(_, )},D(A)= u; u, e C,[--, =] and dUdx
flu= du +F(du)dx----fi is accretive in L( , ) and, by Proposition, satisfies

R(I+ ,A) R(I+ ,A) C[-, ]=D(A), ,> O.
Thus -- generates a nonlinear contraction semi-group (exp (--t)}t>0
on C[-, u] in the sense of Theorem I of Crandall and Liggett [3]" for
h e C[--, u],
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exp (-- tA) h-- s-lim (I + A)-t/h in C[- u, ], t> 0.)
0

We shall show that u e C([0, c) C[-, ]) given by
u(t)- exp (- tA) Uo, t >/O,

is the solution mentioned in Theorem.
Proof of Theorem (existence). We define an extension A of A in

L=(--, )"
duD()={u; u e C[-, ] and du/dx e L(--, )}, Au--

One knows the estimates"

II(I+n)-nUolllUol], IA(I+A)-nUolllnuol
for each 20 and t 0; hence by Lemma 2

and
A(I+)-t/Uo < Uo +max F(r).

Consequently u(t) D(A),
s-lira A(I +)-/Uo-AU(t) in C[-, ]
0

and
w-lim fiA(I +)-:/Uo=fiAu(t) in L( , )
0

for each tO. Now letting tend to 0 in the estimate due to haru
(see (8) in [13])"

(I + fi)-:/uo--uo-- --.(I+fi)-’nuods + 0() strongly in i(

we have, by the Lebesgue’s theorem,

IoU(s)dsu(t)-- Uo-- w*- in L( , ), t 0,

i.e., by the weak* continuity of tAu(t) in L(--, ),

w*- (t)- --A(t) in L(--, ), t)O. .N.D.

5. Remarks. D(A) eoineides with what Crandall [2] calls the
"eeralieg domain" (A) of A for our example.-- is "O-gipeive()" in L(--, ) in the sense of Konishi [9].
Hence {exp (--t)}, is an "order-preeig emi-go" (of type 0)
on C[--, ]. See also Sato [1].

6. Comment. I is known (, for example, in K6mura [8], Kato
[7], Crandall and Liggett [g]) that if is an m-accretive (multi-valued)
oerator in a reflexive Banaeh spaee, the semi-group {ex(-t)}, gen-

erated by - gives the unique strong solution to the roblem"

4) {exp(--tfi)}t>0 coincides with {exp(--tA)}to, where, by definition,
exp (-tA).h=s-lim (I+A)-Et/]h in C2[-,], t>0, h e C.[-,].

0
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-t(t)+
u(t) 0 a.a. t e (0, c),

u(0) =u0 ( e D())
(set u(t) exp (-- t). u0). But it is not the case in non-reflexive Banach
spaces and the complete general theory on the differentiability o
(exp (--t)}t>0 has not been established yet. Thus it seems interesting
or us to study it case by case as in the present paper see also Crandall
[1] and Konishi [10, 11], where one will find the study in L spaces.
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to Prof. M.G. Crandall and to Prof. P.H. Rabinowitz for their valuable
advice. They called my attention to the act of Lemma 2 and this made
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