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(Comm. by KSsaku YOSIDA, M. ,l. A., June 2, 1972)

1. Introduction. Let tO be a domain in Rn with boundary uni-
formly regular of class m+ 1. Let-a(x)D" be a ormally self-
adjoint positively elliptic operator o order m with coefficients defined
and bounded in 9. Let A be a self-adjoint realization of with
domain contained in W(). By N($) we denote the number of
eigenvalues =< t of A. Assuming that the highest order coefficients o
A are continuous R. Beals [2] investigated the asymptotic behaviour of
the resolvent kernel and spectral unction o A, and as an application
o his results he proved that the asymptotic ormula

N(t)-- Cot/+0(-/), t--,c (1.1)
holds for any 0 < 0< h/(h+ 3) provided that the top-order coefficients
of are uniformly HSlder continuous of order h. The object of this
note is to improve the remainder estimate in (1.1) and prove the
following theorem.

Theorem. Suppose 2 is bounded. Le A be a self-ad]oin$ semi-
bounded realization of wi$h domain contained in W(J2). If m<n/2
we make the additional assumption that A satisfies the resolvent
condition for 2<=q<=n/m+e with some 0 ([2]), i.e. for each 30
there are constants c and c. such that (A--)- induces a bounded
operator from Lq() to W() and

(A 2)-u Ilq =< c 121- u

for all u e Lq(O), lal>=c, larg 1>=6. If the highest order coefficients of
are uniformly continuous of order h, then

N(t) Cotn/ + O(t(n-)/) (1.2)
for any 0 t h/ (h+ 2), where

f ddx.
tO a(x,)l

If the highest order coefficients of 4 belong to the class C/ in some
domain containing 2, then (1.2) holds for any 0<t<(h+ 1)/(h+3).

2. Outline of the proof of the main theorem,

If mn/2, we have only to apply the main theorem of K. Maruo
[3] to the sesquilinear form (Au, Av). Hence, in what follows we
assume that m=< n/2.

Lemma 1 (R. Beals [2]). If S and T are bounded operators in
Lz(2) such that the ranges of S and T* are contained in L([2). Then
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the operator ST has a bounded kernel k satisfying
Ik(x, y)I<=IISII.._-]IT*I.

For a complex number/ we denote by d(/) the distance rom/ to
the positive real axis, and or x e 9 we write (x)-min {dist (x, 39), 1}.
Let A be the restriction o to n(9)H(9). Let p be an integer

K, (x, y) the kernelssuch that [p/2]n/2m. We denote by K,(x y) and
o (A--Z)- and (A--)- respectively.

Lemma 2. For any x e , l)O, and a complex number not lying
on the positive real axis

D C n/pm
I-1/Pm

]K,(x, x) K, (x, x)< (1.1J
d(p) (x)d()

where C is a constant dependent on but not on x or p.
Proof. Let p--s+t, where s and t are integers n/2m. Follow-

ing Beals [2] we choose q, q,..., q+ such that
O- qT: q7 m/n qT2 q; q=1/2

and q ---q+m/n or ]=1, ...,s, and r, ..,rt+ similarly. Let, ..., 2 be the roots of 2"-Z. Exactly one of them lies in the sector
u/p arg 2 /p, and we take this to be 2. Then

(A--Z)--- S S (1.2)
js

(A--Z)--- T H T;, (1.3)
jKs

where S-(A--2)- and T-(A--2)-. Let x0 be a fixed point
and 5, ...,5 be unctions in C(9) such that 5(x0)-1 and
gconst. (x0)- or ]=1,...,p and k-0, 1,...,m--1. By elementary
calculation

S= S+R, (1.4)
js js

S -- S+R (1.5)
j>s j>s

where R (resp. R) is a sum o terms having
S-S5-S[A,]S

as a actor or some ks (resp. ks). Combining (1.2), (1.4), (1.5)
we get

>’ (1.6)
S S+ S.R+R S ,

js j>s js j>s

and similarly or (A--Z)- . Hence

{(A p) (A Z) } +
(1.7)

We estimate the kernels o all terms on the right side of (1.7).
Rewriting the inside o the bracket and noting that

(S-T)-T[, ;]S-T[,]T
we investigate only the kernel of
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1T1...5_IT_Tk[, 5k]S/IS+...5sSs [I SSj (1.8)
j>s

for kg s since the remaining ones in the bracket can be dealt with in
a similar manner. By Beals [2] we have

SuI , c l (n/pro) (1/2-1/qu)-1 l/d()II U I1 (1.9)
Ss_j+xUl qj+lgClfll (n/pm)(i/qj-1/qj+l)-I U qj, 2gigs, (1.10)
IIS_j+ulljcll</m></rJ+-/J>-llullj+ 1, l g]g t. (1.11)

With the aid o Lemma 1 and (1.9), (1.10), (1.11), it is shown that the
kernel o (1.8) is bounded by C([Z]n/z/d(z))( -//3(xo)d(z)). It is not
difficult to show that the kernels of the remaining terms on the right
side of (1.7) is dominated by the same value. Hence (1.1) is established
for/=1. For general integers 11 (1.3) can be proved by induction
considering..._.../{(A-z)-i_ (A Z)-}+...V ._
where , .,

_
are functions in C(9) such that (x0)-- 1,+-,

]--1, ..., 1--1, and t...5--5’’ .. It is clear that (1.3) is valid or
/=0. That (1.3) holds or nonintegral values o ollows by induction.

Lemma 2 shows that we have only to consider the case of the
Dirichlet boundary conditions, and hence in what ollows we assume
A--A. Let x0 be a fixed point o 9 and let A0 be the restriction of

.= a.(xo)D" to /(9) H,(9). By K,(x, y) we denote the resolvent
kernel o A. For e C(R) the range o (A--2)- or (A0--2)- is
contained in D(A)--D(Ao) whether the support o is contained in 9 or
not since we are confining ourselves to the Dirichlet boundary condi-
tions. Taking this remark into consideration we may prove the
ollowing lemma by essentially the same method as Lemma 2.

Lemma . If the highest order coecients of are uniformly
H61der continuous of order h, then for

-1, 2, ..., z>0,

where C is a constant depending on ] but not on x, e, .
Now we invoke Theorem 3.2 o S. Agmon [1]. Using this theorem

applied to A0 and Lemma 3 and ollowing the argument of K. Maruo
[3] we obtain the first haft o our main theorem. The remaining part
of the theorem can be proved in a similar manner again ollowing the
argument of [3].
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