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Let A be a division ring which is finite over the center C, and B an
intermediate ring of A/C. Let Z be the center of B, and V the cen-
tralizer V(B) of B in A. In this note, we shall obtain the results of
[1] as applications of the following whose proof is obvious by that of
[3; Corollary 11.13].

Theorem 1. Let u be an element of A such that C[u] is a maxi-
mal subfield of A. Then, for every non-central element x of A there
exists a non-zero y in A such that A=C[x, yuy-1]--C[y-lxy, u].

In the proof of [3; Corollary 11.13], we used [2; Lemma 1 (i)],
which played an essential role in the proof of [1; Theorem 1], too.

Theorem 2. Let C’ be an intermediate ring of Z/C. Then, the
following conditions are equivalent"

(1) B=Z or VC’.
(2) C’ is a maximal subfield of A or V=/= C’.
(3) C’=B M for some maximal snbfield M of A.

Moreover, if one of the above conditions is satisfied then for any maxi-
mal subfield C’[u] of A there exists some non-zero y in V(C’) such that

-1C’ B C [yuy ].
Proof. (1)(2)" If C’ is not a maximal subfield of A and V=C’,

then Z=C’_ V(C’)--B, a contradiction.
(2)@(3)" It is enough to consider the case VC’. We set A’

V(C’). Then, C’BA’ and C’ is the center of A’. Let x be an ar-
bitrary element of V--V,(B) not contained in C’. As is well-known,
A’ contains a maximal subfield C’[u] which is a simple extension of C’.
Then, by Theorem 1, there exists a non-zero element y in A’ such that

UA’--C’[x, yuy-] Obviously, B C’[yuy-] V,(C’[x]) V.(C [y y 1])
=V,(A’)-C’, namely, BC’[yuy-]=C’. It is easy to see that
C’[yuy-] is a maximal subfield of A.

(3)@(1)" If B=Z and V-C’, then C’V(C’)=B, and hence any
maximal subfield M of A containing C’ is a maximal subfield of B, which
implies M V) B M= C’.

Cororally 1. The following conditions are equivalent"
(1) B=Z or V=/=Z.
(2) For every intermediate ring C’ of Z/C, there exists a maximal

subfield M of A such that Ct=B M.
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If A=B then 1=/= [A: B]= [V: C]. Hence, by Theorem 2, we have
the ollowing

Corollary 2 ([1; Theorem 1]). Let A CB. If M is any maximal
subfield of A which is a simple extension of C then C=B yMy-1 for
some non-zero element y in A.

Now, the results of [1 Corollaries 1, 2, 3] ollow immediately from
Theorems 1, 2 and Corollary 2 (cf. also [3; Theorem 11.10]). More-
over, as a direct consequence of Theorem 2, we have the following

Corollary :} ([1; Theorem 2]). Let C’ be a subfield of A contain-
ing C. If K is any subfied of A containing C’ then C’=K M for some
maximal subfield M of A.
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