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26. On Some Examples of Non-normal Operators. III

By Masatoshi FuJiI
Fuse Senior Highschool, Osaka

(Comm. by Kinjird6 KUNUGI, M. J. A., Feb. 12, 1973)

1. Introduction. Inthepreviousnote[3;II], we have introduced
the hen-spectra of operators. If T is an operator acting on a Hilbert
space § with the spectrum o(7), then the hen-spectrum ¢(T) is the com-
plement of the unbounded component of ¢(7)° where M¢ is the comple-
ment of a set M in the complex plane. Clearly, the hen-spectrum is a
compact set in the plane with the connected complement, and we have
proved in [3; II, Proposition 2].

(1) a(TYCs(T)Cco o(T)CT W(T),
where co M is the convex hull of M, M the closure of M, and W(T) is
the numerical range of T'.

In the previous note [3; II], we are concerned with growth condi-
tions: An operator T is called to satisfy the condition (G,) (resp. (H,))
if
(2) ([0 e P —

dist (1, X)
for 2¢ X and X=0(T) (resp. X=6(T)). By (2), we have, T ¢ (G,) implies
Te(H,), and T ¢ (H) implies that T is a convexoid in the sense of
Halmos [5], i.e. W(T)=co o(T).

In the present note, we shall concern with spectral sets introduced
by von Neumann: A closed set S in the complex plane called a spectral
set for an operator T if

(3) oS
and
(4) A= lss

where f is a rational function with poles off S and
|/ lls=sup /@],

cf. [6] for details. If S is a spectral set for T'and SCS’, then S’ is also
a spectral set for 7. A fundamental theorem for spectral set is

Theorem A (von Neumann). The (closed) unit disk D is o spec-
tral set for every contraction.

The following theorem, also due to von Neumann, is a direct con-
sequence of Theorem A :

Theorem B. {a;|a—2|=p} s a spectral set for T if and only if
(T =2 |<1/B.
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The following theorem obtained in [6] is a principal tool in the
below :

Theorem C (Lebow). If S is a compact set which does not sepa-
rate the plane, then S is a spectral set for an operator T if and only if
(4) (M II=lplls
for any polynomial p.

In the below, we shall study a class of non-normal operators defin-
ed by spectral sets. We shall introduce a new class of operators and
discuss some properties in § 2. Following after [4], we shall construct
an example in § 3. Inclusion relations of classes of non-normal opera-
tors are discussed in §4. In §§5-6, we shall give two characteriza-
tions of new class in terms of dilations and polynomials of operators.
In § 7, we make two remarks.

2. Definition. By means of spectral sets, Hildebrandt [4] intro-
duced two classes of non-normal operators: T is a spectroid (resp.
numeroid, in the sense of [3; I]) if o(T) (resp. W(T)) is a spectral set for
T. In this direction, we introduce

Definition 1. An operator T is a hen-spectroid if ¢(T) is a spectral
set for 7.

We shall list up some elementary properties of hen-spectroids:

Proposition 2. A spectroid is a hen-spectroid; and a hen-
spectroid is a numeroid.

Proof. By the definitions, (2) implies the proposition.

Proposition 3. A hen-spectroid satisfies (H,).

Proof. If 2¢¢(T) and

(D C{a; |a—2|=p}
for >0, then we have

n(T—z)-lng-;-
by Theorem B. Hence we have T ¢ (H)).

Proposition 4. T is a hen-spectroid if and only if (4') is satisfied
for any polynomial p for S=a(T).

Proof. If T is a hen-spectroid, then we have (4) for S=4(T).
Conversely, if (4') is satisfied for any polynomial p, then §(T) is a spec-
tral set for T by Theorem C since §(T)° is connected.

Proposition 5. A compact hen-spectroid is normal.

Proof. If T is compact, then ¢(7) is at most countable, so that
a(T)¢ is connected, and we have ¢(T)=46(T). Hence o(T) is a spectral
set for T by the hypothesis, or T is a spectroid. It is well-known that
a compact spectroid is normal.

3. Construction. In this section, we shall give a method to con-
struct a hen-spectroid:



126 M. Fusn [Vol. 49,

Theorem 6. For an arbitrary operator A with a compact spec-
tral set S, there is a normal operator B with S=o(B) such that S is a
spectral set for T=A®B.

Proof. If f is a rational function with poles off S, then we have

(D=1 f(ABB)|=| f(ADF(B)|
=max (|, | SBD=| fls
since the spectrum is a spectral set for a normal operator. Hence S is
a spectral set T'.

Corollary 7. For any A, there is a normal operator B such that
T=A®B is a hen-spectroid.

Proof. By Theorem 6, S=4§(A) is a spectral set for T. Since
o(T)=0(A)Ua(B)=S, we have ¢(T)DS, and &(T) is a spectral set for T,
or T is a hen-spectroid.

Remark. In the previous note [3; I, Theorem 3], we have con-
structed a numeroid by a similar method, assuming SC W(B). How-
ever, this is insufficient: We need to assume that SU W(A)C W(B),
so that we can prove that W(T)=co {W(A), W(B)}= W(B) is a spectral
set for 7.

4. Application. We shall prove

Theorem 8. There is a hen-spectroid which does not satisfy (G,).

Proof. Let
4=
0 0
and B be a simple bilateral shift. Then we have
|AI=1, [Bl=1, oB)=C, &B)=D,

where C is the unit circle and D the unit disk. By Theorem A, D is a
spectral set for A. Hence, by Corollary 7, T=A@®B is a hen-spectroid
and ¢(T)={0}UC. We have

[a+2) =2 1T

so that for
(0
o= (1)
we have
1 -1 1 -1
(a+3) |2l (arg) o =2virize
If T ¢ (G), then we have
2o s 2) el ) o
2 - 2 -

dist (—.;_ a(T))
which is a contradiction.
Corollary 9. The class of all spectroids is properly contained in
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the class of all hen-spectroids.

Proof. If not, then every hen-spectroid T is a spectroid, so that
T e (G)), which is impossible by Theorem 8.

Theorem 10. There is a numerotd which is not a hen-spectroid.

Proof. We have proved in [3; II, Prop. 10], there is a numeroid
which is not (H,). Hence Proposition 3 implies the theorem.

Remark. The converse of Theorem 8 is also valid: There is
T e (G) which is not a hen-spectroid. If not, every T e (G) is a nor-
maloid, which is impossible.

5. Dilation. For an operator T acting on §, if there is normal
operator N acting on & including $ which satisfies
(5) T"x=PN"x n=0,1,2,...)
for z e 9, where P is the projection of & onto §, then N is called a
strong normal dilation of T. The following theorem is basic in our
study, cf. [5], [8] and [9]:

Theorem D (Berger-Foias-Lebow). If S is a (compact) spectral
set for T, then there is a strong normal diation N of T with
(6) a(N)CoS
where 38 s the boundary of S.

For numeroids, the following characterization is proved in [8]:

Theorem E (Schreiber). An operator T is a numeroid if and only if

there is a strong normal dilation N of T with
(7) W(N)=W(D).

Schreiber’s theorem suggests us the following characterizatins of
spectroids and hen-spectroids:

Theorem 11. T is a hen-spectroid if and only if there is a strong
normal dilation N of T with
(8) GINYCa(T).

Proof. If T is a hen-spectroid, then we have a strong normal dila-
tion N with (8) by Theorem D taking S=4(T).

Conversely, if N and T satisfy the hypothesis of Theorem 11, then
we have

IpMI=IpM I 2l =215

for any polynomial p since we have p(T)x=Pp(N)x for x e by (5).
Hence T is a hen-spectroid by Proposition 4.

Theorem 12. T is a spectroid if and only if there is a strong
normal dilation N of T with
(9) a(N)Cda(T).

Proof. If T is a spectroid, then we have a strong normal dilation
N of T with (9) by Theorem E taking S=a(T).

The converse is essentially same with the proof of Schreiber’s
theorem [8]. Using the Neumann expansion, we have
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((T—-»2|PY=(N=D""z|y)
for any 12 ¢(T) and z, y € . Hence we have
(f(Dz|=>UIN)z|y)
for every rational function f with poles off ¢(7). Therefore we have
1SN NSNS o SN S Moy
so that ¢(T) is a spectral set for T, or T is a spectroid.

6. Transposition. Following after [5], we shall call an operator
T is a normaloid if | T'||=r(T) where r(T) is the spectral radius of 7.
In [1], the following characterization of spectroids is proved:

Theorem F (Berberian). T is a spectroid if and only if f(T) is a
normaloid whenever f is a rational function with poles off o(T).

Inspired by Berberian’s theorem, we shall give here a characteriza-
tion of hen-spectroids:

Theorem 13. T is a hen-spectroid if and only if p(T) is a nor-
maloid for any polynomial p.

Proof. At first, we state
(10) @) =[Pty =127 s
for every polynomial p ; because

r(p(T)=sup {|pl; ¢ e s@(T))}
=sup { ¢; p € pa(T)}
=sup {[p(D|; 2€ o(T)}
=[Pllocr
by the spectral mapping theorem and
2l =Pz
by the maximum modulus principle.
If p(T) is a normaloid for every p, then (10) gives us
[p(D) |=r(T)=|p|;
which tells us that T is a hen-spectroid by Proposition 4.
Conversely, if T is a hen-spectroid, then we have
ID(DIZ 217 2y = r@ITN DD
Hence we have ||p(D)||=r(p(T)), so that p(T) is a normaloid for every
polynomial p.

Remark. Theorem 13is a generalization of a theorem of Williams
[10]1: T is a numeroid if p(7T) is a normaloid for any polynomial p. A
similar proof for Theorem 18 is also obtained by R. Nakamoto in his
private letter.

A similar proof for Theorem 13 given us that T is a hen-spectroid
if and only if (4’) is satisfied for every polynomial p and S=a(T).

7. Appendix. In the previous note [3: II, § 4], we have defined
a class Q of operators: Te(Q if
(11) #(T)=co o(T).

We have shown that the intersection of Q and the class of all convexoids
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is R introduced by Luecke [7]. We have also proved, in [3; II,
Theorem 3], T ¢ R if and only if
12) W(T)=6(T).
In this section, we shall give two remarks on hen-spectroids with
Q and hyponormality. By a theorem of [4] and (12), we have
Proposition 14, If T e ( is a numeroid, then T is a hen-spectroid.
Proposition 15. There is a hyponormal operator which is not a
hen-spectroid.

Proof. Clancey’s example in [2] presents us a hyponormal opera-
tor T which is not a spectroid. However, his example satisfies that
a(T)e is connected. Hence ¢(T)=4&(T) and T is not a hen-spectroid.

Finally, we shall prove the following characterization of a class of
operators:

Proposition 16. T e R is a hen-spectroid if and only if thereis a
strong normal dilation N of T with W(N)=a&(T).

Proof. If T isahen-spectroid, then T is a numeroid, so that there
is a strong normal dilation N of T with W(N)=W(T) by Schreiber’s
theorem. Since T ¢ R, we have W(N)=W(T)=&(T) by (12).

Conversely, if W(N)=4(T) by a strong normal dilation N of T,
then T is a hen-spectroid by Theorem 11. Moreover, we have

s(TYCW(T)CT W(IN)=4&(T),
so that T satisfies (12) and T ¢ R.
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