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21. On the Boundedness of a Class of Operator-valued
Pseudo-differential Operators in L? Space

By Tosinobu MURAMATU
Research Institute for Mathematical Sciences, Kyoto University

(Comm. by Kosaku YosIipa, M. J. A., Feb. 12, 1973)

Introduction. In this paper we present a class of pseudo-
differential operators which are continuous in L?(R?), 1<p<oo. They
will play an important role in studying the complex interpolation spaces
of Sobolev spaces (see [3]).

Our main tools are the operator-valued version of Calderén-
Vaillancourt’s L-boundedness theorem ([2]), the Marcinkiewicz inter-
polation theorem, and the real-variable technique of Calderén and
Zygmund which gives the weak-type estimate.

Notations. _L(X,Y)—the space of bounded linear operators from
a Banach space X to a Banach space Y.

L?(E, dp; X)—the space of X-valued L? functions on a measure space
(E, dp)
L»(R*; X)=L?(R*, dx ; X), L*(E,dpw=LrE,dy; C).
r=(x, -+, %,) € R", a=(a, -+ -,a,),a; are integers,
rE=xP. -l ICY]=0(1+“~+6Y",
|xf=at+---+a, D*=Dp...Dz, D;=3d/ox,.
S(R" ; X)—the space of X-valued rapidly decreasing C~ functions.
m(S)—measure of the set SCR*. a,=m{x||z|<1}.

Definition. Let X,Y be two Banach spaces. Then an (X, Y)-
valued infinitely differentiable function p(x, &, y) of (x,&,y) e R"XR"
X R" belongs to S%, (R°", X ; Y) if
(1) | DsDip(x, & V|| Lx, vy S CAA[EPrro1e1=elPl,

(2) | Dy D2p(, & W) ||.L x, 7y SCAA|EPrrelri=et?l,
for any multi-index «, 8, 7, where 0=<p,d,e<1.

For any p of this kind with ¢<1 and for any fe S(R"; X) the
integral

_ 1 (.
T @)= o5 @, &, )@y
=L [a+ien -G, & rw)esdedy
(2m)"

is well defined and Tf belongs to S(R";Y), where m is a positive
integer such that 2m(1—e¢)>pu+n, and 4, the Laplacian operator.
Theorem 1. Let X,Y be two Hilbert spaces,
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vz, &y el , R"X;Y), 0=9,<1,0=5ps1,
and let —2p=>n {max (3, p) + max (¢, )} —2np. Then
| TS ||zacrn; vy S ClNIDI - S 2o crn; 0

where C depends only on ,¢,p,m. Here ||p|| denotes the least value of
C for which (1) and (2) hold for |a|<2m,, |B|<2m, |y|<2m,, where
m, m;, m, are the least integers such that 2m=n-+2, m,(1—45)>5n/4,
my(1—¢)>5n/4, p’=min (o, max (3, ¢)), & =max (3, p'), ¢ =max (e, p').

Proof. Noting that p belongs to S« ,. .., the theorem can be proved

Il
in the same way as Calderén-Vaillancourt [2], in which we shall need

the following lemma:

Lemma 1. Let X,Y be Hilbert spaces, and let T(o) be a strongly
measurable, uniformly bounded L(X,Y)-valued function on a measure
space (B, do) such that

l T(e)*T(a;) ”.[:(X,X) <nh(a;, 0,)*

” T(GI)T(GZ)* ”-L,(Y,Y) é hZ(Ul’ 02)2
and

(o, )= f h(a,, 0)hoo, 0)do
18 the kernel of a bounded operator on LXE, do) with norm N?, then

HL T@ds| , <N

where F is any subset of finite measure of E.
Proof. See Calderén-Vaillancourt [1].
Theorem 2 (Marcinkiewicz), Let X,Y be Banach spaces, 1<q
< oo, and let T be a sub-additive mapping from L'(R™; X)+ LYR"; X)
into the space of Y-valued strongly measurable functions on R".
Assume that for all 2>0
m{z || Tf(@) |y >3 =C 27 fllzianx»
m{ || T f(@)|ly > B ={Co" || f llzacrn 0}

(when q=oo we assume that | T f ||z« gnyy = Cl fllremnx). Then for all
1<p<q we have

”Tf“LP(R";Y)éCP”f”Lp(Rn;X)
where C, depends only on C,, C,, p and q.

For the proof of the theorem see, for example, E. M. Stein [5]
p. 21.

Theorem 3. Let X,Y be Hilbert spaces, 1<p<oo, and let
K(x,z,9) be an L(X, Y)-valued function which satisfies the following
properties:

(I) KeC°(R"X(R"—{0hXR"; L(X,Y)),

(II) There exists p(x,&y) such that for feSWR*; X),
geS(R*; Y)
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JK(x, =Y, WS (y)dy=(2n)““”p(x, &, Y f(yers-vidyds, IK(x, x—Y, Y*

9(x) dx=(27r)"””p(x, &, Y*g(x)etevidads

(III) Its Fourier transform p(x, &, y) with respect to z belongs to
St (R L(X,Y), px, & y)* belongs to Sk . (R™; L(Y,X)), and
(¢, 0, 8, 2), (u*, p*, 0%, ¢*) satisfy the conditions stated in Theorem 1;
(AV) For any |B|+]7|=1, |a|+]7|=1,
I|z[** Dy DK (%, 2, Y| L2, 7)< Cpy < 0,
|2l DiDIK (@, 2, 9)* | Loy, ) < Cy < 0.

Then for all f e LP(R"; X)
(3) T5@)= K@, v—y, 1)/ @)dy
is convergent in L°(R*;Y) and
( 4 ) “ Tf“LP(R”;Y)§CPHf”L"(R":X)’

Proof. (i) By Theorem 1 we obtain the conclusion for the case
p=2.
(ii) We shall prove that for f e L'(R": X)

(5) M| || T (@) |y >3 = Ca7| S llzacen
where C, depends only on n, C,, Cy,, (5|+]|7|=D.

From Calderén-Zygumund’s theorem it follows that (cf. E. M.
Stein [5]) for f e L'(R™; X), 2>>0, there exists a decomposition of R™ so
that R"=FUQ, FN2=0, || f(x)|x <1 almost everywhere on F, 2 is the
union of cubes 2=|J; @, whose interiors are disjoint, and so that for
each Q;

Q) = || S lzaigus i = 27Am(Qy).
Let

fx) for xe F,
M@= 1 PR .
Q) ij(y) ] or z € Qf,
(Qf=the interior of Q,), and let g(x)= f(z) — f,(x).
Then from the inequality

| fo(® 2ecmn; ) S AA42°") || f || 21 (rns 20
we obtain

(6) m{x ||| T fo(@) ||y > 2 =< C,(L+2)27|| f || agrns ;-
Let «z* be the center of Q,,2b, the length of the side of Q, 7%
=+nb,, and let us write B,={z||x —a*|<2r;}, D’=; By, D=R"\D,
gx)  for xe @y,
€r)=—
94(@) {0 otherwise.
Since the integral of g, is equal to zero, it follows that

Tgk(w)=fK(m, 22—, NI (Wdy

=J{K(x, x—,y)—K(x, x— 2%, *)}g,(y)dy.
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Notice that
Kz, x—y,y) —K(x, x —x*, x*)

=J.1 {grad, K(z, x—y(®), y(t)) —grad, K(x, x—y(t), y())}(x* —y)dt,
0
where y(t) =y +t(x* —v), so that
| Kz, 2—vy, y) —K(x, x— 2%, 2%)|| L x,v) S C'rye| . — 2%,
for x & By, y € Q;, since |z* —y|,|z* —y(t)|<7; and

Ix——y(t)l_z_lx—x"l—lx’“—y(t)lglw—x"|—~mz—;—(x—x’°).
Thus we have

JD 1T9:(®)|ydz<C'v 1 b, JD | — a7 dic]| 9|l a gm0

SC'N0y || 95|11 Rn: 2
Therefore

[ 1Ts@lsdr=cr [ 5 19,@ lrde=C" {19 |,
< | f lgacrns o + 272D} C(LA+27) | | ga s 05
and from this it follows that
D N{z ]| T9@) [y > D =C"27H| fllzacrn;x)-
Since m(D) < a,n?*m(2), it follows that m{x||T9@®)|y >}
C A7 fllpagnsxys Which, combining with the inequality (6), gives the
estimate (5), since
m{x || Tf@)|ly >22 =m{z ||| T fo(@) [y > 2} +m{z || T9(@) |y > }.

(iii) Case 1<p<2. T is well defined for L'(R"; X)+L*R"; X)
and also linear. By the result (i), (ii) and Theorem 2 we obtain the
conclusion for the case.

(iv) Case 2<p<oco. Let p’ denote the conjugate exponent of p.
From Fubini’s theorem it follows that for f e S(R”; X), 9 € S(R"; Y)

j (Tf @), g()ydz= j dy (f(w, j K(w, 5—y, y)*g(x)dx) o
- j (F@), T*9w) xdy,

where T* is the operator with the kernel K(y, —z, x)*.
But the theorem is valid for 1<p’<2. Consequently

( f (TF(), g(x»ydx\g 1S lzocmso | T*9 o cms s

SCOFN S llzoens |91 2or s vy
This gives (4) in view of the duality between LP(R"; X) and
L?(R"; X), (see Phillips [4]). Since S(R"; X) is dense in LP(R"*; X),
this completes the proof of the theorem.
Corollary. Let X be a Hilbert space and let K(t,x,2,y) be a
B(R* X R" X R")-valued continuous function of tel={t|0<t=<a).
Assume that K has compact support {z||z|<b} in z, and that
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(1) IK(t, x, 2, Y)dz=0.
Then for any 1<p<oco and
(I) for feL?R"; X) the integral
[[trat[ket, 2, @—v) 1t v @y
is convergent in LP(R™; X) and defines a bounded linear operator from
L?(R™; X) into L*(R™ ; X).
(II) For feL?(R"; X) the integral
7 [K(t, @, =)/t S @)y
defines a bounded linear operator from
L?(R™; X) into LP(R™; L*(,t™'dt; X)).
(IT1I) For u(t, x) e LP(R™; L*(, t7'dt ; X)) the integral
[[trat[Ret, 2, @—v) 1t puct,
0
is convergent in LP(R™; X) and defines a bounded linear operator from
L*(R™; L, t7'dt) ; X) into LP(R" ; X).
Proof. Setting
p(t’ X, E; y):JK(t, Xy s ?/)e—mdz,
we first observe that for any f e S(R"; X),

-n — :__]-_ i€ (@-v)
¢ jK(t, z, (=) /t, v).f(W)dy @ “p(t, %, 1§, y) f(y)e -V dyds.

Next we observe that
(8) | DeD2p(t, x, t&, Y) “LG(I,t—ldt) éCaﬂq(l ‘H‘SD_W,
for any 1=q¢=< 0, a,8. In fact, from the inequality
ID;Dgp(t, x, &, ?/) Iécaﬂ: csup IK[(sa)(t, X, %, y) l a’nbny
2 Y52

where K(t, x, 2, y)=(—1)’D;K(t, x, 2, y), and the inequality

| DeDép(t, %, &, y)|
O [ L CDORR b5, 24T ) e e SClél
7=0
where
Cpx=0,(b+km)"27% sup sup |DIK{(t, %, 2, ¥)|,
Irl=k t, 2,2,y
it follows

a 1/,
I D=DED(E, %, 88, ) lgacr.c-rary < Cup (j tq'ﬁ'-ldt) =00,

for |£|<1, [p|=1. And for |£|=1, |8|=1 we have, taking k>|8|,
| DeDép(t, , t&, Y) becr,i-1a0y
écgﬁﬁ/lel tqw—1dt+cgpk|5|—kqj;e] palel-ke-1dg— Cla 2|16,
Also from (9) and the inequality
(Dt 2,6, || [DiK(t, 2, (e Ddz|<C. 81
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where C,=a,b"** sup |D:K(t, x, 2, y)|, it follows that

t, 2,952

| Dsp(t, x, t&, W) 3acr,i-1an
1, 00
sco[Meptatron| (eriat=ca,

0 1/1¢1

And hence (8) is proved. Similarly, we obtain

1o0) | Dy Dip(t, x, t&, Y) |l zar,e-1aty = Copg(LH[EN AL
Finally,
lt="12[*"*DsDIK(t, , 2 /t, Y || ez, 1-1a0)
o0 1
<c, {f t-w-ldt} e =y 2| bP < Clp b s,

1z1/0
for |2|<bs, and for |a|=1,

|t="|z|**'D:K(¢, z, 2 /t, Y) HLQ(I,t—ldz)
00 1/
<C, U t-nq-q—ldt} =0 b,

1z1/b
Now in order to apply the theorem to the operators in the corollary
there only remains to observe that for the operators given by

T;:IZ o(t)Ct-1dt for L e X,
TL=0o(t) for L e X,
T, f=I:go(t) Ftdt  for fe L, t-dt; X),

where ¢ is a measurable function, their norms are majorized as
1T\l £z, 2 SN @llzacr,e-1anys

|| Tz”-lf(x;m(z,z—ldc;xn = “ TzIII(Lﬂ(I,c-ldz;X),X) =“90”L2(I,t—1dz>~
This completes the proof of the corollary.
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