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Introduction. In this paper we present a class o pseudo-
differential operators which are continuous in L(R), 1 p c. They
will play an important role in studying the complex interpolation spaces
of Sobolev spaces (see [3]).

Our main tools are the operator-valued version of CalderSn-
Vaillancourt’s L-boundedness theorem ([2]), the Marcinkiewicz inter-
polation theorem, and the real-variable technique of Calder6n and
Zygmund which gives the weak-type estimate.

Notations. _(X, Y)--the space o bounded linear operators rom
a Banach space X to a Banach space Y.
L(E, dp; X)--the space of X-valued L unctions on a measure space
(E, d/)
L(R X)--L(R, dx X), L(E, d/)-L(E, d/ C).

x= (x,, ., Xn) e R, a= (a, ., a), a are integers,

x X ..Xn, I01-"01--... --On,

Ixl=x+ +x, D=D[’. .D, D-3/3x.
,$(Rn; X)the spce of X-wlued rpidly decreasing C functions.
m(S)measure of the set SRn.

Definition. Let X, Y be two Banach spaces. Then an _L(X, Y)-
valued infinitely differentiable unction p(x,
R belongs to S",,,(Rn, X; Y) if

( 1 ) IID"Dp(x,
( 2 llDDp(x,,y)ll.g<x.r)<C(l+ll)
for any multi-index a, fl, 7, where 0__< p, 8, =< 1.

For any p of this kind with <1 and for any f e $(Rn;X) the
integral

Tf(x) l exd;p(x, , y)f(y)e-vdy
(2)

(2)--- (l+l])-(1--A){p(x, , y)f(y)}e(x-)ddy

is well defined and Tf belongs to (R; Y), where m is a positive
integer such that 2m(1 -D/+n, and A the .Laplacian operator.

Theorem 1. Let X, Y be two Hilbert spaces,
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p(X, , y) e S,,(R3n, X Y), 0_<_, 1, O=<p__<l,
and let --2l>=n {max (6, p)+max (, p)}--2np. Then

where C depends only on 6, , p, n. Here I]Pll denotes the least value of
C for whieh (1) and (2) hold for ]a[<__2m, [/l_<_2m, 1.]_<_2m, where
m,m,m are the least integers sueh that 2m>=n+2, m(1--6’)>Sn/4,
m(1-’)Sn/4, p’-min (p, mx (6, D), 0’=max (6, p’), ’=max (, p’).

Proof. Noting that p belongs to S,.,,,,, the theorem can be proved
in the same way as Calder6n-Vaillaneourt [2], in which we shall need
the following lemma"

Lemma 1. Let X, Y be Hilbert spaees, and let T(a) be a strongly
measurable, uniformly bounded _(X, Y)-valued function on a measure
space (E, da) such that

T(a)* T(a) .(,) <= h(a,)
]1T(al)T(a2)* ]].l:(r,y)<= h2(0"1, 0"2)

and

h(a, a.)-Jh(a, 0")h2(0" 0"2)d6

is the kernel of a bounded operator on L2(E, da) with norm N2, then

where F is any subset of finite measure of E.
Proof. See CalderSn-Vaillancourt [1].
Theorem 2 (Marcinkiewicz). Let X, Y be Banach spaces, lq

<= c, and let T be a sub-additive mapping from L(Rn X)+L(R; X)
into the space of Y-valued strongly measurable functions on Rn.
Assume that for all 0

m{x Tf(x)[[r > 2} C2-
(when q- we assume that ][Tf [n.;y)Cl]f [L=(.;x)). Then for all
l<p<q we have

where C depends only on C, C, p and q.
For the proof of the theorem see, for example, E. M. Stein [5]

p. 21.
Theorem 3. Let X, Y be Hilbert spaees, 1< p< , and let

K(x, z, y)be an (X, Y)-valued funetion whieh satisfies the following
properties"

( I ) K e C(" ("--{0}) " (X, Y)),
(II) There exists p(x, #, y) sueh that for f e 3(R" X),

g e 3(R"; Y)
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(III) Its Fourier transform p(x, , y) with respect to z belongs to
S,,(R _t(X, Y)) p(x, , y)* belongs to "*S,,,,,,(R .(Y, X)), and
(/, p, , D, (g*, p*, *, *) satisfy the conditions stated in Theorem 1

(IV) For any ]fl]+y]=l, ]a]+]=l,
zn+DD;K(x, z, y)(x,)Cr,

Then for all. f e L(R X)

( 3 Tf(x)--.[K(x, x-- y, y)f(y)dy

is convergent in L(R; Y) and

Proof. (i) By Theorem 1 we obtain the conclusion or the case
p:2.

(ii) We shall prove that or f LI(R X)

where C depends only on n, C, Cr, ([[+[r[=l).
From CalderSn-Zygumund’s theorem it ollows that (cL E. M.

Stein [5]) or f e U(R X), 2> 0, there exists a decomposition of R so
that R=F 9, F 9=, ]f(x)]x almost everywhere on F, 9 is the
union of cubes 9= Q, whose interiors are disjoint, and so that for
each Q

2m(Q) f (Q;) 2n2m(Q)
Let

f( or x eF,
fo(X)

(m(Q) ef(g)dg for z },

(}--the interior of ), and let ()=f(z)--fo().
hen from the inequality

l]fo(X)]
we obtain

Let x be the center o Q,2b the length o the side of Q, r
b, and let us write B={x]x--x]2r}, D’= B, D=RD’,

otherwise.
Since the integral of g is equal to zero, it follows that

Tg(x) =.[K(x, x y, y)g(y)dy

=[{K(x, x--y, y)--K(x, x--x, x)}g(y)dy.
J
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Notice that
K(x, x--y, y)-K(x, x--x, x)

-j’i{grad g(x, x--y(t), y(t))--grad g(x, x--y(t), y(t))}(x-y)dt,

where y(t)-y+t(x-- y), so that
K(x, x-- y, y) K(x, x x, x) II-(x,r) <--_ C’r Ix x --,

for xe B, y e Q, since ]x-y],[x-y(t)]gr and
1x-- y(t) x-- x -- x y(t) [ x--x [--r (x--x).

Thus we have

Tg(x) dxC’b x--x-n-dx’g;)’

Therefore

C"{f[(;x) +22m(9)} C"(1 +2) f
and from this it ollows that

m(D {x[ Tg(x) [r > 2}) C’2-1

Since m(D’) an/m(9), it ollows that m{x Tg(x) ly > }
Cx2-]f[[(;x), which, combining with the inequality (6), gives the
estimate (5), since

(iii) Case 1p 2. T is well defined for L(R X) +L(R X)
and also linear. By the result (i), (ii) and Theorem 2 we obtain the
conclusion for the case.

(iv) Case 2p. Let p’ denote the conjugate exponent of p.
From Fubini’s theorem it ollows that .or f e 3(R X), g e 3(R Y)

I(Tf(x), g(x))dx Idy (f(y),;Kex, x--y, y)*gex)dx)
(f(g), T*g(g))xd,

where T* is the operator with the kernel K(g, --, z)*.
But the theorem is valid for 1 < p’<2. Consequently

This gives (4) in view o the duality between L(Rn;X) and
L’(R X), (see Phillips [4]). Since (Rn X) is dense in L(R X),
this completes the proof o the theorem.

Corollary. Let X be a Hilbert space and let K(t,x,z,y) be a
(R XR X Rn)-valued continuous function of t e I= {t 0 t a}.
Assume that K has compact support {zzb} in z, and that
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(7) x, z, y)dz-- O.

Then for any 1< p< oo and
( I ) for f e LV(R=; X) the integral

t--ldtK(t,x, (x--y) /t, y)f(y)dy

is convergent in LV(R; X) and defines a bounded linear operator from
LV(R= X) into LV(R X).

(II) For f e LP(R X) the integral

t-[K(t, x, (x--y)/t, y)f(y)dy

defines a bounded linear operator from
LP(R X) into LP(R L(I, t-ldt; X)).

(III) For u(t, x) e L’(R L(I, t-dt X)) the integral

f: t--ldtK(t, x, (x--y) /t, y)u(t, y)dy

is convergent in LV(R" X) and defines a bounded linear operator from
LV(R= L(I, t-dt) X) into LP(R X).

Proof. Setting

x, , y)--jK(t, x, z,p(t, y)e-dz,

we first observe that for any f (Rn; X),
1 p(t x,t,y)f(y)e-)dyd.t K(t, x, (x-- y) / t, y)f(y)dy-

(2z)
Next we observe that

( 8 ) llDTDp(t, x, t, y) [[(,_) _<_ C.(1 +ll)-’,
for any 1__< qg oo, a, ft. In fact, from the inequality

[DDp(t, x, , y)[<=C.,- sup [K(")(t, x, z, y)[ab,
tXyZ

where K(")(t, x, z, y)--(--iz)D"K(t, x, z, y), and the inequality
D"Dp(t, x, , y)]

(9) --2- =o(--1)()K")t’x’z/i[i ’y e- dz =<C.]]-,
where

C--an(b +k=)2- sup sup )rr(()t,. x,z,y)l,
Irl=k t,x,z,y

it follows

D;D{(t, , t, )._ C tq-dt Ce,
or 11, Ill. And for I11, 11 we have, taking >,

C,l/ii0 tqli-ldt +C7’ I-qs/ii tqli-q-ldt=C:ll-i’lq
tlso from (0) and the inequality
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where C,--anbn+l sup ID",K(t, x,z, Y)I, it ollows that
tXyZ

Pill

J i-,-,-,f- c7.ACJ0 lt-ldt + Co,

And hence (8) is proved. Similarly, we obtain
(10) DDp(t, x, t, y)[l(z.t-t) NC(1 +] )-.

Finally,

D,DK(t, x, z /t, y)

C
/

t-q-dt -CI b<Cb= ,
for Nb, and for 1-- 1,

t-l *DIK(t,

C. t-nq-q-dt Iz =C.qbn+
l/b

Now in order to apply the theorem to the operators in the corollary
there only remains to observe that or the operators given by

T:--I2(t):t-ldt or:e X,

T--(t) or e X,

Ty=.[:(t)y(t)t-dt or y e L(I, t-dt X),

where is a measurable function, their norms are majorized as

This completes the proof of the corollary.
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