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40. On G,-Sets in the Product of a Metric Space
and a Compact Space. 1I
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(Comm. by Kinjiré KUNUGI, M. J. A., March 12, 1973)

In [2] we defined G;-space as a topological space which is homeo-
morphic to a G,-set in the product of a metric space and a compact
Hausdorff space and proved that an M-space is a G,-space if and only
if it is a p-space. We also left it as an open problem to give an inter-
nal characterization to G,-spaces. The purpose of this note is to give
such characterizations. All spaces in this note are at least Hausdorff,
and all maps are continuous. As for general terminologies and sym-
bols in general topology, see [1].

Definition 1. Let {9¥/;|i=1,2, ...} be a sequence of open covers
of a space X and & a filter in X. Then & is said to be Cauchy w.r.t.
{9} provided for each 1 there is Fe F and W e 9/, with FCW. Sup-
pose S is a closed set of X. If every maximal closed filter & in X which
is Cauchy w.r.t. {9/;} and contains S as an element converges, then S
is said to be complete w.r.t. {9/;}. We may drop the word ‘w.r.t. {9/;}’
discussing Cauchy filter or complete closed set if there is no fear of con-
fusion.

Definition 2. Let X be a space with a sequence {9/} of open cov-
ers and f a map from X onto a space Y. If for every ¥ ¢ Y and for
every maximal closed filter ¥ in X, Cauchy w.r.t. {9/} satisfying
S U(y) ¢ F, there is G ¢ & such that y ¢ F(&), then f is said to be closed
w.r.t. {9;}. Obviously each closed map from X onto Y is closed w.r.t.
every sequence {W,} of open covers of X.

Theorem 1. A Tychonoff space X is a G,-space (namely homeo-
morphic to a Gy,-set in the product of a metric space and a compact
Hausdorff space) if and only if there is a sequence {9/;|1=1,2, ---} of
open covers of X and a map f from X onto a metric space M such that
(1) for each ye M, f~(y) is complete w.r.t. {9},

(i) f is closed w.r.t. {I,}.

Proof. Necessity. Let X be a G,-set in the product space Cx M
of a compact Hausdorff space C and a metric space M. Suppose X
=M, U;, where U, is an open set of Cx M. We denote by =, and =,
the projections from C X M onto C and M respectively. For each point
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2=(u,y) of X and each natural number » we define a nbd (=neighbor-
hood) T',(x) which is a product of an open nbd of # in C and an open nbd of
yin M and satisfies T,(x)CU,. Notethat T,, W, and F denote closures
in Cx M (but not in X) throughout this part of the proof. Put
Wo={W,(x)|xe X}, where W,(x)=T,(2)NX.

Then 94,, n=1,2, ... are open covers of X. Let f be the restriction
of xz, to X ; then we may assume without loss of generality that f is a
map from X onto the metric space M. To prove (i) let & be a maximal
closed Cauchy filter w.r.t. {9//;} such that f~%(y) e F. Then for eachn
there is F,e < and W,e 9, such that F,cW,cW,cT,cU,, and
F,C f(y). Since C is compact, N{F|F ¢ F}={x} for some x e Cx M.
On the other hand x e F,cW,cU,, n=1,2, ..., and hence x ¢ Nz, U,
=X follows. Thus F¥—z in X proving (i).

To prove (ii) assume that & is a maximal closed Cauchy filter such
that f~Y(y) ¢ & for a point y of M. Then f~'(y) NF=0 holds for some
Fed. Assume f(G)NS.(y)£0 for all £>0 and for all G € &F, where
S.(y) denotes the e-nbd of ¥ in M. Then f~'(S.(v)) € & follows from the
maximality of &F. The filter base z(¥F)={x,(F)|F € ¥} converges to a
point u, in C because C is compact. Recall that & is Cauchy, and hence
there are F, ¢ F and W, e 9/, with F,cW,cW,cT,. If T,Nz;'(y)
=0 for some n, then f(F,)Crx,(T,) 2, i.e. y ¢ f(F,), which proves (ii).
(Note that T, is the product of an open set in C and an open set in M.)
Hence we suppose T,Nz;'(y)#0, n=1,2,.--. Then x,=u, e T,
Nzy(ycU,, n=1,2,.... Hence 2, X. Let U be a nbd of %, in C.
Then since z,(F)—u,, 77 (T)NXeF. Thus XNz (NS y)eF
for every e>0. This proves that F—ax,in X. Therefore x,=(u,, ¥) € F'
for every F ¢ &, and accordingly f~(y) N F =0 follows. This is a con-
tradiction. Therefore f(G) NS, (y)=0 for some ¢>0 and G ¢ &, which
means ¥ ¢ f(G) in M proving that f is closed w.r.t. {9//,}.

Sufficiency. Since X is Tychonoff, we may assume without loss of
generality that each 9§, consists of cozero open sets (see [2]). We de-
fine a map g from X into X X M by g(x)=(x, f(x)), v X. Then f is
obviously a topological map from X onto a subset X’ of X xM. Now,
all we have to show is that X’ is G, in XX M. Let us recall some
properties of fX. Each point of X may be regarded as a maximal
filter of zero sets in X. Let U be a cozero open set in X. Then we
put U={ze pX|X—Uez}={ze X |FCU for some Fe F}. These
for the cozero open sets U in X form a base for fX. Now for each n,
W,=U {I7V| W e 9Y,} is obviously an open set of X such that W, D X.
Therefore W=\;_, W, is a G,-set in X consisting of all maximal zero
set filters in X which are Cauchy w.r.t. {9/,}. Thus WX M is G, in
BXxM. We can express X’ as
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(1) X'={(z,9) e WXM|f'(y) e z}.
It is obvious that each (z, y) e X’ satisfies f~'(y) ez and (2,%) e WX M.
Conversely, let (z,¥) ¢ Wx M satisfies f~'(y) ez. Then, since ze W,
there is a maximal closed filter & containing z as a subcollection.
Therefore & is Cauchy w.r.t. {W,}. Since f'(y) e, F—xe (¥
follows from (i). Thus z also converges to . In other words z and «
represent the same point in pX. Hence (z, y)=(z, f(x)) € X’. Thus (1)
is confirmed.

Now we are going to prove that X’ is G,in Wx M. ForeachyeM
and each natural number n we define an open set M,(y) of fX XM by

M.(9)=(F(S()))” XS (y),
where S,(y) denotes the spherical nbd of ¥ with radius 1/#. Also put
M,=[U{M.(y)|y € MIIN(W X M).

Then M, is an open set of WX M satisfying M,D>X’. Now we claim
that X'=Mz.,M,. To prove our claim, let (z/,%¥)e WXM—X’. Then
2’ is a maximal zero set Cauchy filter satisfying f~'(v") ¢ 2’ (see [1]).
Let ¥ be a maximal closed Cauchy filter containing 2z’ as a subcollec-
tion. Then, since f~'(y’) ¢ & is obvious, by (ii) there is G € & such that
¥ e f(@) in M. Since f'(f(®) is a zero set belonging to Z, it belongs
to 2/, and therefore we may assume without loss of generality that
Gez. There isnfor which S,(¥)N f(G)=0. Then we can prove that
', y") ¢ M,,(y) for every y € M, and accordingly (2, ¥') ¢ M,,. Because,
if p(y’,¥)=1/3n, then ¥ ¢ S;,(¥), and hence (?/,¥y’) ¢ M,,(y¥). On the
other hand, if p(y’, ¥)<1/3n, then S,,(¥) N f(G)=0 in M, which implies
that f1S;,,(¥)NG=0 in X. Hence X— f(S;.(¥) ez’ follows, i.e.
2 ¢ (fY(S;(¥))". Therefore (z/,y") ¢ M,,(y¥). Thus in any case (¢, %)
¢ M,,(y) is proved. After all we have proved X’'=\2_.,M,. Thus X’
is G, in WX M which is G, in X x M. This completes our proof.

Theorem 2. A Tychonoff space X is a Gy-space if and only if
there are sequences {/,|i=1,2, - - -} and {U,|i=1,2, - - -} of open cov-
ers of X such that

<i> q];k+1<CL]i’ =12, ...,

iy if Fis a maximal closed filter and if for a fixed point x of X
and for each i there is F, ¢ F and W, e W, satisfying F,CW,NS(x, U,),
then F converges.

Obviously <iiy is equivalent with

iy if F is a closed collection with finite intersection property
and if for a fixed point x of X and for each i there is F;e F and W,
e W, satisfying F,C W,;NS(x,U,), then N{F|F e F}=+0.

Proof. Assume that X is a G;-space; then it satisfies (i) and (ii)
of Theorem 1. Let C{/,, C{/,, --- be a normal sequence of open covers
of M with mesh ¢{/;,—0. Put U,={f"(V)|Vecy,}. Then (i) of the
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present Theorem is satisfied. Suppose & is a maximal closed filter in
X satisfying the condition in {ii). Let f(x)=y. Note that F is
Cauchy w.r.t. {W,}. Hence if f~(y) € &, then & converges because of
(. If f'(yed, then by (i) ye f(G) for some GeF. Hence
S(y, V)N f(G)=0 for some n. This implies that S(x, U,) NG=0 in X.
This, however, contradicts that F,CS(z, U,) for F, e %¥. Thus i) is
proved.

Conversely, assume that X satisfies {i) and <iiy. Then X is de-
composed into the disjoint union of sets of the form M;_, S(x, U,). Let
us denote by M the decomposition (=disjoint closed covering) and by f
the natural map from X onto M. Now, for each ¥ ¢ M we define that
{f/ S, U))|n=1,2, ...} is a nbd base of y in M. Then M turns
out to be a metrizable space, and f is a continuous map from X onto
M. To prove (i) and (ii), we assume that & is a maximal closed filter
in X, Cauchy w.r.t. {9,}. If f'(y) e, then since f '(y)S(x,U.,),
n=1,2, ... for any e f'(y), by <ii> ¥ converges. Namely f(y) is
complete. Next, assume that f~(y) ¢ F and that F,CcW,e W,, F, e F,

n=1,2,.... Fix a point x of f~!(y); then we claim that S(x,U,) NG
=0 for some n and for some G ¢ . Because, if we assume the con-
trary, then S(x,U,.) e ¥, n=1,2,.... Therefore F,NS(x,U,,) is a

member of & contained in W, NS(x, U,). Thus by {ii> F—p for some

point p of X. Since f'(y) e, pe f'(y). But this implies that

S(z, U,) NS, U,)=0 for some n and eventually S(z,U,)NG=0 for
some G e F contradicting our assumption. Thus S(z,U,)NG=0 for

some Ge%. This implies that S(f~'(¥),U,.)NS(G, U,,)=0, and

hence F(S(/ (), Un,) N F(G)=0, i.e. y e f(G), which proves that f is

closed w.r.t. {9¥,}.

Theorem 3. A space X is a G,-space if and only if it is homeo-
morphic to a closed set in the product of a metric space and a Cech
topologically complete space.

Proof. Theorem 2 indicates that every closed set of a G;-space is
a G,space, and thus the if part of the present Theorem follows. On
the other hand it is easy to see that X’ in the proof of Theorem 1 is a
closed set in W x M, and thus the only if part follows. Details will be
left to the reader.
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