
No. 3] Proc. Japan Acad., 49 (1973) 183

On G.Sets in the Product of a Metric Space
and a Compact Space. II
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(Comm. by Kinjir5 KUNU,(I, M. $. A., March 12, 1973)

In [2] we defined G,-space as a topological space which is homeo-
morphic to a G,-set in the product of a metric space and a compact
Hausdorff space and proved that an M-space is a G,-space if and only
if it is a p-space. We also left it as an open problem to give an inter-
nal characterization to G,-spaces. The purpose of this note is to give
such characterizations. All spaces in this note are at least Hausdorff,
and all maps are continuous. As for general terminologies and sym-
bols in general topology, see [1].

Definition 1. Let (cli--1, 2, .} be a sequence of open covers
of a space X and a filter in X. Then is said to be Cauchy w.r.t.
{q/} provided for each i there is F e and W e with Fc W. Sup-
pose S is a closed set of X. If every maximal closed filter in X which
is Cauchy w.r.t. (q/} and contains S as an element converges, then S
is said to be complete w.r.t. {}. We may drop the word ’w.r.t. (}’
discussing Cauchy filter or complete closed set if there is no fear of con-
fusion.

Definition 2. Let X be a space with a sequence {q/Y} of open cov-
ers and f a map fromX ontoaspaceY. If for everyyeYandfor
every maximal closed filter in X, Cauchy w.r.t. (q/} satisfying
f-’(y) e , there is G e such that y e f(G), then f is said to be closed
w.r.t. {q/}. Obviously each closed map from X onto Y is closed w.r.t.
every sequence {W} of open covers of X.

Theorem 1. A Tychonoff space X is a G,-space (namely homeo-
morphic o a G,-set in the product of a metric space and a compact
Hausdorff space) if and only if there is a sequence (ciF [i-1, 2,... } of
open covers of X and a map f from X onto a metric space M such that
(i) for each y e M, f-l(y) is complete w.r.t.
(ii) f is closed w.r.t.

Proof. Necessity. Let X be a G,-set in the product space C xM
of a compact Hausdorff space C and a metric space M. Suppose X
-7= U, where U is an open set of C x M. We denote by
the projections from C xM onto C and M respectively. For each point
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X= (u, y) O X and each natural number n we define a nbd (--neighbor-
hood) T(x) which is a product o an open nbdou in C and an open nbd of
y in M and satisfies T,(x) U. Note that T, W and F denote closures
in C M (but not in X) throughout this part o the proof. Put

q/Y-- {W(x) x e X}, where W(x)-- T(x) X.
Then , n=l, 2,... are open covers of X. Let f be the restriction
of = to X; then we may assume without loss o generality that f is a
map rom X onto the metric space M. To prove (i) let be a maximal
closed Cauchy filter w.r.t. {cg/} such that f-(y) e . Then for each n
there is F e and W e q/Y such that F W W T Un, and
rnf-(Y). Since C is compact, {FIF e }--{x} or some x e CM.
On the other hand x e W U, n- 1, 2, ., and hence x e (= U
X ollows. Thus -*x in X proving (i).
To prove (ii) assume that is a maximal closed Cauchy filter such

that f-(y)e or a point y o M. Then f-(y)F= holds or some
F e . Assume f(G)glS(y)::/::) for all 0 nd or all G e , where
S(y) denotes the -nbd of y in M. Then f-(S(y)) e ollows rom the
maximality oi . The filter base ()--{(F)IF e } converges to a
point u0 in C because C is compact. Recall that is Cauchy, and hence
there are F e and Wn e with F W W Tn. If T (y)
=D or some n, then f(F)(T) y, i.e. y e f(F), which proves (ii).
(Note that T is the product of an open set in C and an open set in M.)
Hence we suppose gl ;(y)=/=D, n-- 1, 2, .. Then x0--(u0, y) e
O=;l(y)U,n_l, 2,.... Hencex0eX. LetUbeanbdou0 in C.
Then since z()-u0, () X e . Thus X () f-(S(Y)) e
or every e 0. This proves that -x0 in X. Thereore x0--(u0, y) e F
or every F e , and accordingly f_l(y) FeD ollows. This is a con-
tradiction. Therefore f(G) S(y)--D or some e0 and G e , which
means y e f(G) in M proving that f is closed w.r.t. {c}.

Sufficiency. Since X is Tychonoff, we may assume without loss of
generality that each q/ consists o cozero open sets (see [2]). We de-
fine a map g rom X into fiX M by g(x)-(x, f(x)), x e X. Then f is
obviously a topological map rom X onto a subset X’ o X M. Now,
all we have to show is that X’ is G in /X M. Let us recall some
properties o fiX. Each point o fiX may be regarded as a maximal
filter of zero sets in X. Let U be a cozero open set in X. Then we
put U={zeXIX-Uez}-{zeXIFU or some Fe}. These U
or the cozero open sets U in X orm a base or fiX. Now or each n,
W’- [9 {WIW e c} is obviously an open set of fiX such that W’ X.
Therefore W=(__ W’ is a G-set in fiX consisting of all maximal zero
set filters in X which are Cauchy w.r.t. {q/). Thus WM is G in

fiX M. We can express X’ as
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( 1 ) X’---- {(z, y) e W M]f-l(y) e z}.
It is obvious that each (z, y) e X’ satisfies f-(y) e z and (z, y) e W M.
Conversely, let (z, y) e W M satisfies f-(y) e z. Then, since z e W,
there is a maximal closed filter containing z as a subcollection.
Therefore is Cauchy w.r.t. {W}. Since f-(y) e , xe f-l(y)
follows from (i). Thus z also converges to x. In other words z and x
represent the same point in/X. Hence (z, y)--(x, f(x)) e X’. Thus (1)
is confirmed.

Now we are going to prove that X’ is G in W M. For each y e M
and each natural number n we define an open set M(y) of fiX M by

M(y) (f-(S(y))) S(y),
where S(y) denotes the spherical nbd of y with radius 1 In. Also put

Mn-- [_J {M(y) y e M}] VI (W M).
Then M. is an open set of W M satisfying MX’. Now we claim
that X’=

__
M. To prove our claim, let (z’, y’) e W M--X’. Then

z’ is a maximal zero set Cauchy filter satisfying f-(y’) z’ (see [1]).
Let be a maximal closed Cauchy filter containing z’ as a subcollec-
tion. Then, since f-(y’) is obvious, by (ii) there is G e such that
y’ f(G) in M. Since f-(f(G)) is a zero set belonging to , it belongs
to z’, and therefore we may assume without loss of generality that
G e z’. There is n for which Sn(Y’) f(G)=. Then we can prove that
(z’, y) Mn(Y) Jor every y e M, and accordingly (z’, y’) e M. Because,
if p(y’, y)>= 1/3n, then y’ S(y), and hence (z’, y’) e M(y). On the
other hand, if p(y’, y) 1/3n, then S(y) f(G)= ) in M, which implies
that f-(S(y))G= in X. Hence X--f-(Sn(y))eZ’ ollows, i.e.
Z’ (f-l(San(y)))~. Therefore (z’, y’) M(y). Thus in any case (z’, y’)
Mn(Y) is proved. Ater all we have proved X’==M. Thus X’

is G in W M which is G in fiX M. This completes our proof.
Theorem 2. A Tychonoff space X is a G-space if and only if

there are sequences ( i-- 1, 2, } and {cU i= 1, 2, } of open coy-

ers of X such that
(i) cU*/<cU, i=1,2,...,
(ii) if is a maximal closed filter and if for a fixed point x of X

and for each i there is F e and W e c satisfying FicW S(x, cU),
then converges.

Obviously (ii) is equivalent with
(ii)’ if is a closed collection with finite intersection property

and if for a fixed point x of X and for each i there is F e and W
e satisfying F W S(x, cU), then {F IF e }=/= O.

Proof. Assume that X is a G-space; then it satisfies (i) and (ii)
of Theorem 1. Let c(?, c(?, be a normal sequence of open covers
of M with mesh c(?0. Put U={f-(V) IV e c(?}. Then (i} of the
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present Theorem is satisfied. Suppose is a maximal closed filter in
X satisfying the condition in (ii). Let f(x)--y. Note that is
Cauchy w.r.t. {W). Hence if f-(y) e , then converges because of
(i). If f-(y) e, then by (ii) yef(G) for some Ge. Hence
S(y, c) f(G)-- for some n. This implies that S(x, U) G-- in X.
This, however, contradicts that FS(x, cU) or F e . Thus (ii is
proved.

Conversely, assume that X satisfies (i) and (ii). Then X is de-
composed into the disjoint union of sets of the orm

__
S(x, cU). Let

us denote by M the decomposition (--disjoint closed covering) and by f
the natural map from X onto M. Now, or each y e M we define that
{f(S(f-l(y), tun))In=-1, 2,...) is a nbd base o y in M. Then M turns
out to be a metrizable space, and f is a continuous map from X onto
M. To prove (i) and (ii), we ssume that is a maximal closed filter
in X, Cauchy w.r.t. {94}. If f-(y)e , then since f-(y)S(x, CU),
n-l, 2,... or any x e f-l(y), by (ii converges. Namely f-(y) is
complete. Next, assume that f-(y) e and that F W e q/, F e ,
n--1, 2, .... Fix a point x of f-(y) then we claim that S(x, cU) G
--D for some n and for some G e . Because, if we assume the con-
trary, then S(x, cU/) e , n--- 1, 2, .. Therefore F S(x, cU/) is
member of contained in W S(x, cU). Thus by (ii) -p or some
point p of X. Since f-(y)e, p ef-(y). But this implies that
S(x, cU) S(p, cU)-- or some n and eventually S(x, cU) G-- for
some G e contradicting our assumption. Thus S(x, cU)OG=-D for
some G e. This implies that S(f-(y),CU/I)OS(G, cU+I)-D, and
hence f(S(f-l(y), cUn/) f(G)-D, i.e. y e f(G), which proves that f is
closed w.r.t. {q/Y}.

Theorem 3. A space X is a G-space if and only if it is homeo-
morphic to a closed set in the product of a metric space and a ech
topologically complete space.

Proof. Theorem 2 indicates that every closed set o a G-space is
a G-space, and thus the if part o the present Theorem ollows. On
the other hand it is easy to see that X’ in the proof of Theorem 1 is
closed set in W M, and thus the only i part ollows. Details will be
let to the reader.
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