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1. Introduction. An -semigroup is a commutative cancellative
archimedean semigroup which has no idempotent. The structure and
construction of finitely generated or power joined -semigroups were
studied by [2], [3], [5], [6], and also by [4] from the more general point
of view. This paper treats finitely generated -semigroups as sub-
semigroups of the direct product of the positive integer semigroup and
a finite abelian group by using the quotient group and its torsion sub-
group. Finitely generated -semigroups are characterized by their
quotient group.

2. Preliminaries. In this paper we denote the additive semi-
group of integers, positive integers, negative integers, non-negative
integers, and positive rational numbers by Z, Z/, Z_, Z+, and R
respectively.

Proposition 1 ([1], [6]). Let G be an abelian group and I: GG
Z+ be a function satisfying
(1.1) I(a, fl)--I(fl, ) for all , fl e G.
(1.2) I(c, fl) +I(fl, ,)= I(c, fl) + I(fl, ’) for all c, fi, , e G.
(1.3) I(s, c)= 1 ( being the identity of G) for all e G.
(1.4) For each e G there is m e Z+ such that I(a, )0.
Let S= {(x, ) x e Z+, e G}. Define an operation

(x, a)(y, fl)-- (x +y +I(c, fl) aft).
Then S is an -semigroup. Every -semigroup can be obtained in this
manner.

S is denoted by S--(G;I). The group G is termed the structure
group o S with respect to (0, D, the unction I is called an index
unction or q-unction corresponding to G. For a given -semigroup
S, for each a e S, the relation p on S is defined by

xp y if and only i ax-ay or some m, n e Z+.
Then p is a congruence on S and G=S/p is an abelian group. Each
p-class contains exactly one element p, a e G, such thatp e Sa. Then
S is isomorphic onto (G ;I) where

A commutative semigroup S is called power joined if or every
a, b e S there are m, n e Z/ such that a= b. If S is power joined, it
is archimedean.

Proposition 2 ([5]). An -semigroup S=(G; I) is power joined if
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and only if G is periodic. S= (G; I) is finitely generated if and only

if G is finite.
Therefore a finitely generated -semigroup is power joined. Let

S=(G I) be a finitely generated -semigroup. Define : G--.R by
1(3.0) (a) - ,ee I(a, ).

Proposition : ([5]). The function satisfies the following condi-
tions.
(3.1) ()=1, s the identity element of G.
(3.2) ()+(fl)-(afl) is a non-negative integer for all , fle G.
(3.3) I(, fl)=()/(fl)-(fl) for all , fle G.
If G-.R satisfies (3.1) and (3.2), and if I is defined by (3.3), then I
satisfies (1.1) through (1.4).

In the sense of (3.0) and (3.3) there is a one-to-one correspondence
between and I for a fixed G.

Proposition 4 ([2]). S is a finitely generated -semigroup if and
only if S is isomorphic onto a subdirect product of a positive integer
additive semigroup and a finite abelian group.

Let S be a commutative and cancellative semigroup. Consider a
congruence r on SS defined by (x, y)r(z, u) if and only if xu=yz in S.
Then (SS)/v is a group which contains a subsemigroup isomorphic
to S. We term (S S)/r the quotient group of S and denote this group
by Q(S).

Proposition 5 ([7]). Let S--(G I) where G need not be finite.
Q(S) is the abelian extension of Z by G with respect to a factor system
f(a, fl) defined by
(5.1) f(a, )=I(a, fl)- 1.

We denote Q(S) by Q(S)=ext (Z, G; f), i.e.,
Q(S) {(m, a): m e Z, a e G}

in which (m, a)(n, ) (m+n+f(a, fl), aft).
:. Structure and construction. By Proposition 4 or [4], S is a

finitely generated -semigroup if and only if S is a subsemigroup of
Z+K for some finite abelian group K. The ollowing theorem,
however, characterizes finitely generated -semigroups in terms of a
refined condition (6.3) or their quotient group.

Theorem 6. The following are equivalent.
(6.1) S is a finitely generated -semigroup.
(6.2) S is an -semigroup and Q(S)-ZxH for some finite abelian

group H.
(6.3) S is a subsemigroup of Z+ xH such that (Z+ x H)\S is finite. *)

Proof. Let S=(G; I)=(G;) and g=[Gl>l. (6.1)(6.2). Q(S)

*) By (Z+H)\S we mean (Z+H)-S.
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=ext (Z, G f) where G is a finite abelian group with g--IGl 1. First

define " GR by (3.0) and then define 8" Q(S)Z by
(6.4) 8(m, )=g. (m- 1 -t-()), (m, ) e Q(S).
By using (5.1), (3.3), it is easy to show that is a homomorphism of
Q(S) into Z. Clearly (Q(S)){0}, so (Q(S)) is isomorphic onto Z.
Without loss o generality, 8"Q(S)Z is assumed to be surjective. In
order that (m, ) be in the kernel of , it is necessary that m-1+()
--0, hence () has to be a positive integer. But, there s at most one
such (m, )for each e G. Hence, the kernel o 8, denoted by H, is
finite. Thus Q(S) is homomorphic onto the free group Z. By the
theorem in the abelian group theory, Q(S) is isomorphic onto Z H.

(6.2) (6. 3) Suppose that Q(S)-- Z H identifying Q(S) with Z H
and that S Q(S). Note that elements of S are denoted by (m, ), (n, )
but the operation is (m, )(n, )-- (m+n, ). Then Z H-- (Z_ H)

({0} H) ) (Z/ H). We now prove that S ({0} H) and either

SZ/H or SZ_H. Suppose (0,) e S. Then (0, )l (0, e) e S,
a contradiction, since S cannot contain the identity (0, D of ZH.
Suppose that (x, e) e Z/ H and (y, ) e Z_ H and both are in S. Then
(x,)-.(y,)--(O,,)eS or some ’eH where --yeZ+. This is
contrary to the above result. As Z/ H and Z_H are isomorphic,
we can assume that SZ/ H. To show that (Z/ H)\S is finite, we
need only show, equivalently, that (i) or each e H, there is a positive
integer such that (1, ) e S, (ii) there is ] e Z+ such that (k, e) e S for
all ] where is the identity o H. To prove (i) we note that since
ZH is the quotient group o S, or each e H we can find (m, ),
(n,) e S such that (m,)(--n,-9--(O,). As H is finite, there is
--p e Z/ such that -=-. But, then (m, )(n, )---(m--pn, ) as we
mentioned. To show (ii) we first note that P is a positive integer
additive semigroup such that Z/\P] c i and only if P contains two
elements which are relatively prime. Now we prove (ii). By (i)
S (Z/ {}) and it is isomorphic to a subsemigroup of Z+. We
show that (n, D and (n+ 1, D are in S for some n e Z+. Since ZH is
the quotient group of S, we can find (p, ), (q, )eS such that
(p, )(q, )-= (1, D, whence p q+ 1 and=. Thus (q, ) and (q+ 1, )
are in S. We may assume :/:. Let r be the order o in H. Then
r> 1. Clearly (q, )-(q+ 1, ) and (q, ) are in S, but

(q,)-(q+l,)--(qr-t-l,D, (q,)--(qr, e).
Thus we have found n=qr.

(6.3) (6.1) It is immediate to show that any subsemigroup of
Z/ H is an -semigroup. Archimedeaness of S follows from power
joinedness of S. We show only that S is finitely generated. It is well
known that any positive integer additive semigroup is finitely
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generated, therefore S f (Z/ {}) is generated by a finite subset A.
Since (Z/ H)\S is finite, for each a e H, there is a smallest k. e Z/
such that (x, a) e S for all x>_ k.. Let l.= k, / k.. It can be easily
shown that S is generated by a subset of the set

A (3 {(x, )" #= H,x 1.}.
Hence S is finitely generated. This completes the proof. Q.E.D.

Let H’={ e G" () e Z/}. Then H-{(1-(), )" e H’}. H is
the torsion subgroup of Z H and H-H’. The embedding SZ/ H
is a universal repelling object in the category of the embeddings of S
into finitely generated steady -semigroups. (See [8].) As a con-
sequence o Theorem 6 we get immediately the following theorem.

Theorem 7. Let H be a finite abelian group, and be a mapping

of H into the power set 2z/ of Z/, denoted by (), which satisfies
(7.1) (a) +(fl)(afl) for all , e H,
(7.2) ]Z+\J(D]< c.
Let S= {(x, a)" x e (a), a e H} in which a binary operation is defined
by (x, ) (y, fl)- (x + y, ). Then S is a finitely generated -semigroup
whose quotient group is ZH. All finitely generated -semigroups
can be obtained in this manner.

Thus a finitely generated -semigroup S is determined by a finite
abelian group H and a map " H-2z/ so S is denoted by

S- (H,
Theorem 8. Let S- (H,) and T----- (K, 2). Then S- T if and

only if
(8.1) there is an isomorphism f of H onto K and
(8.2) there is an element a e K such that for each e K,

(a)----{x e Z+ af()--c and x e () for some e H}.
Proof. Assume that S-T. It is routine to prove that any

isomorphism of S onto T can be uniquely extended to an isomorphism
of Q(S) onto Q(T). By Theorem 6, Q(S)ZH and Q(T)-ZK.
Hence S T implies Z H Z K. Let h be an isomorphism of Z H
onto Z K, and let (x, a) and [y, fl] denote elements of Z H and Z K
respectively. As H and K are the torsion subgroups of ZH and
ZK respectively, h induces an isomorphism H onto K, denote

f----hl, i.e., h(O,)=[O,f()]. Now let [1, a]--h(1, D. Then we have
h(x, )-- h((1, D(0, ))-(h(1, D)h(0, )

[1, a][0, f()]- [lx, af()].
In order that h be onto, has to be 1 or --1. Without loss of generality

we assume that SZ/H and TZ/ K. Therefore l--1. Thus we
get
(8.3) h(x, )= [x, af()].
It is easy to see that h defined by (8.3) is an isomorphism of Z H onto
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ZK. Every isomorphism of S onto T is the restriction of some h
given by (8.3). Now the theorem is an immediate consequence.
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