94. Codimension 1 Foliations on Simply Connected 5-Manifolds

By Kazuhiko Fukui
Mathematical Institute, Kyoto University
(Comm. by Kinjirô Kunugı, M. J. A., June 12, 1973)

1. Recently N. A'Campo [1] has shown that every simply connected, closed 5-manifold with vanishing second Stiefel-Whitney class admits a codimension 1 foliation. The essential point in his construction is to utilize Smale's classification theorem [4].

In this note, similarly utilizing Barden's result [2], we show that every simply connected, closed 5 -manifold admits a codimension 1 foliation. All the manifolds and the foliations considered here, are smooth of class C^{∞}.
2. Preliminaries. a) The second Stiefel-Whitney class $\omega^{2}(M)$ of a simply connected manifold M may be regarded as a homomorphism $\omega^{2}: H_{2}(M: Z) \rightarrow \boldsymbol{Z}_{2}$, and we may consider ω^{2} to be non-zero on at most one element of a basis. In a simply connected 5 -manifold, the value of ω^{2} on the homology class carried by an imbedded 2 -sphere is the obstruction to the triviality of its normal bundle. Such a "non-zero valued" class has order 2^{i} for some positive integer i. Then i is a diffeomorphism invariant $i(M)$ of M.
D. Barden [2] has classified simply connected, closed, smooth 5manifolds under diffeomorphism. Such a manifold is determined by $H_{2}()$ and $i()$. More precisely :

Proposition 1 [2]. Simply connected, closed, smooth, oriented 5manifolds are classified under diffeomorphism as follows. A canonical set of representatives is $\left\{X_{j} \# M_{k_{l}} \# \cdots \# M_{k_{s}}\right\}$, where $-1 \leqq j \leqq \infty, s \geqq 0$, $1<k_{1}$ and k_{i} divides k_{i+1} or $k_{i+1}=\infty$. A complete set of invariants is provided by $H_{2}(M)$ and $i(M)$. (for the notation, see [2], p. 373.)
b) S^{2}-bundles over S^{2} with group SO_{3} are classified by $\pi_{1}\left(\mathrm{SO}_{3}\right) \cong Z_{2}$. We denote by A the product, and by B the non-trivial bundle. Next consider reductions of the structure group to SO_{2}, which are classified by $\pi_{1}\left(\mathrm{SO}_{2}\right) \cong Z$. Let T_{k} be the S^{2}-bundle associated with the reduction given by the integer k. Furthermore, let x be the class in $H_{2}\left(T_{k}\right)$ of the sphere imbedded as the cross-section, corresponding to the "south pole", and y be the class of the sphere imbedded as a fiber. If \cdot denotes the intersection number of homology class, then $x \cdot x=k, x \cdot y=1$ (we have the orientation of y to ensure this) and $y \cdot y=0$. For the homology bases of A, B, we shall reduce the bundles as T_{0}, T_{1}. Then we have, in [5]

Proposition 2. Let N be a simply connected 4-manifold, $\omega \in H_{2}(N)$ with $\omega \cdot \omega=2 s$, then $N \# T_{k}$ admits a diffeomorphism inducing the following automorphism of $H_{2}\left(N \# T_{k}\right)$:

$$
\xi \in H_{2}(N) \rightarrow \xi-(\xi \cdot \omega) y, x \rightarrow x+\omega-s y, y \rightarrow y .
$$

Generators x, y of the second homology groups of various copies of the 2 -sphere bundles A, B will carry the same suffixes as the bundles. Now, consider for the case $N=A_{1}, T_{k}=A_{2}$. (i.e., k is even.) Put $\omega=l y_{1}$. By Proposition 2, we have a diffeomorphism $d_{l}: A_{1} \# A_{2} \rightarrow A_{1} \# A_{2}$ for each $1<l<\infty$. Let $e: A_{1} \# A_{2} \rightarrow A_{1} \# A_{2}$ be a diffeomorphism which induces the automorphism of $H_{2}: x_{1}, y_{1}, x_{2}, y_{2} \rightarrow y_{2}, x_{2}, y_{1}, x_{1}$. Put $\alpha(l)=d_{l} \cdot e$. Next consider for the case $N=B_{1}, T_{k}=B_{2}$. (i.e., k is odd.) Put $\omega=2^{j} \cdot x_{1}$. As before, by Proposition 2 we have a diffeomorphism $f_{j}: B_{1} \# B_{2} \rightarrow B_{1} \# B_{2}$ for each $1 \leqq j<\infty$. Let $g: B_{1} \# B_{2} \rightarrow B_{1} \# B_{2}$ be a diffeomorphism which corresponds to the automorphism $x_{1}, y_{1}, x_{2}, y_{2} \rightarrow x_{2}, y_{2}, x_{1}, y_{1}$. Put $\beta(j)$ $=f_{j} \cdot g$. Hence we have an orientation preserving diffeomorphism $\alpha(l)$: $A_{1} \# A_{2} \rightarrow A_{1} \# A_{2}$ for each $1<l<\infty$ (resp. $\beta(j): B_{1} \# B_{2} \rightarrow B_{1} \# B_{2}$ for each $1 \leqq j<\infty)$ such that the inducing automorphism $\alpha(l)_{*}: H_{2}\left(A_{1} \# A_{2}\right) \rightarrow H_{2}$ $\left(A_{1} \# A_{2}\right)$ (resp. $\beta(j)_{*}: H_{2}\left(B_{1} \# B_{2}\right) \rightarrow H_{2}\left(B_{1} \# B_{2}\right)$) corresponds to the following matrix;

$$
A(l)=\left[\begin{array}{cccc}
l & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & -l & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \quad\left(\operatorname{resp} . B(j)=\left[\begin{array}{cccc}
0 & -2^{j} & 1 & 0 \\
0 & -2^{j} & 0 & 1 \\
1 & -2^{2 j-1} & 2^{j} & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\right)
$$

We denote by $N(l)$ (resp. $L(j)$) the manifold obtained by identifying points $(x, 0)$ and $(\alpha(l) \cdot x, 1)$ for $x \in A_{1} \# A_{2}$ (resp. $(x, 0)$ and $(\beta(j) \cdot x, 1)$ for $x \in B_{1} \# B_{2}$) in $\left(A_{1} \# A_{2}\right) \times[0,1]$ (resp. $\left.\left(B_{1} \# B_{2}\right) \times[0,1]\right)$. The projection $\left(A_{1} \# A_{2}\right) \times[0,1] \rightarrow[0,1]$ (resp. $\left.\left(B_{1} \# B_{2}\right) \times[0,1] \rightarrow[0,1]\right)$ induces a fiber map $N(l) \rightarrow S^{1}$ with $A_{1} \# A_{2}$ as a fiber (resp. $L(j) \rightarrow S^{1}$ with $B_{1} \# B_{2}$ as a fiber). Let $C P^{2}$ be the complex projective plane. We denote by $L(-1)$ the manifold obtained by attaching $C P^{2} \times\{0\}$ and $C P^{2} \times\{1\}$ in $C P^{2} \times[0,1]$ by a diffeomorphism which reverses the orientation of the projective line. Let $L(\infty)$ be the product $C P^{2} \times S^{1}$.

Lemma (i) $H_{2}(N(l))=\boldsymbol{Z}_{l}+\boldsymbol{Z}_{l}$ for $1<l<\infty, H_{2}(L(j))=\boldsymbol{Z}_{2^{j}}+\boldsymbol{Z}_{2^{j}}$ for $1 \leqq j<\infty, H_{2}(L(-1))=Z_{2}$ and $H_{2}(L(\infty))=Z$.
(ii) $\quad \omega^{2}(N(l))=0$ for $1<l<\infty . \omega^{2}(L(j)) \neq 0$ for $j=-1,1,2, \cdots, \infty$.

Proof. (i) It follows by noting the attachment.
(ii) First note that $i^{*}(\tau(N(l)))=\tau\left(A_{1} \#_{H_{2}}\right) \oplus \varepsilon^{1}$ for $1<l<\infty, i^{*}(\tau(L(j)))$ $=\tau\left(B_{1} \# B_{2}\right) \oplus \varepsilon^{1}$ for $j \neq-1, \infty, i^{*}(\tau(L(j)))=\tau\left(C P^{2}\right) \oplus \varepsilon^{1}$ for $j=-1, \infty$, where i is the inclusion map of $A_{1} \# A_{2}$ (resp. $B_{1} \# B_{2}$ or $C P^{2}$) into $N(l)$ (resp. $L(j)$) as a fiber and ε^{1} is a trivial line bundle. Then we have $i^{*} \omega^{2}(N(l))=\omega^{2}$ $\left(A_{1} \# A_{2}\right), i^{*} \omega^{2}(L(j))=\omega^{2}\left(B_{1} \# B_{2}\right)$ for $j \neq 1, \infty$ and $i^{*} \omega^{2}(L(j))=\omega^{2}\left(\boldsymbol{C P}^{2}\right)$ for $j=-1, \infty$. Since $i^{*}: H^{2}\left(N(l) ; Z_{2}\right) \rightarrow H^{2}\left(A_{1} \# A_{2} ; Z_{2}\right)$ is injective, $\omega^{2}\left(A_{1} \# A_{2}\right)$
$=0, \omega^{2}\left(B_{1} \# B_{2}\right) \neq 0$ and $\omega^{2}\left(\boldsymbol{C P} \boldsymbol{P}^{2}\right) \neq 0$, we have $\omega^{2}(N(l))=0$ and $\omega^{2}(L(j)) \neq 0$.
Let $p \in A_{1} \# A_{2}$ (resp. $B_{1} \# B_{2}$) be a fixed point of $\alpha(l)$ (resp. $\left.\beta(j)\right)$. Let $\varphi: S^{1} \rightarrow N(l)$ (resp. $L(j)$) be an imbedding defined by $t \in[0,1] \rightarrow(p, t) \in$ $\left(A_{1} \# A_{2}\right) \times[0,1]$ (resp. $\left.\left(B_{1} \# B_{2}\right) \times[0,1]\right)$. This imbedding is transverse to the fibers. Therefore this imbedding is transverse to the foliation on $N(l)$ (resp. $L(j)$) induced from the pointwise foliation of S^{1}. Then by modifying the foliation on $N(l)$ (resp. $L(j)$), we can obtain the foliation on $N(l)$ (resp. $L(j)$) which contains a Reeb component (see [3]). We denote by $(M(l), \partial M(l))$, (resp. $(K(j), \partial K(j))$ the foliated manifold with boundary obtained by removing the Reeb component from $N(l)$ (resp. $L(j)$). Then $\partial M(l)($ resp. $\partial K(j))$ is a closed leaf diffeomorphic to $S^{1} \times S^{3}$, and $H_{2}(M(l))=\boldsymbol{Z}_{l}+\boldsymbol{Z}_{l}, H_{2}(K(j))=\boldsymbol{Z}_{2 j}+\boldsymbol{Z}_{2 j}$ for $1 \leqq j<\infty, H_{2}(K(-1))=\boldsymbol{Z}_{2}$, $H_{2}(K(\infty))=\boldsymbol{Z}, \omega^{2}(M(l))=0$ and $\omega^{2}(K(j)) \neq 0$.
3. Theorem Every simply connected, closed 5-manifold admits a codimension 1 foliation.

Proof. It is sufficient to prove for the case $i(M) \neq 0$ since N. A'Campo [1] has shown the theorem for the case $i(M)=0$. Let M be a simply connected, closed 5 -manifold with $i(M)=j$. As first consider for the case $j \neq-1, \infty$. Then we have $H_{2}(M)=\widehat{\boldsymbol{Z + \cdots} \cdots+\boldsymbol{Z}}+\boldsymbol{Z}_{2 j}+\boldsymbol{Z}_{2 j}$ $+\boldsymbol{Z}_{n_{1}}+\boldsymbol{Z}_{n_{2}}+\cdots+\boldsymbol{Z}_{n_{\mathrm{s}}}+\boldsymbol{Z}_{n_{s}}$. By the way, we have already known in [3] that S^{5} admits a codimension 1 foliation. By modifying the foliation on S^{5}, we can obtain the foliation on S^{5} which contains $(n+s+1)$-Reeb components. We remove $(n+s+1)$-Reeb components from the foliated 5 -sphere. Then the resulting manifold is the foliated manifold with $(n+s+1)$-copies of $S^{1} \times S^{3}$ as a boundary. We denote it by $(B(n+s+1)$, $\partial B(n+s+1)$). Let X be the manifold obtained by attaching, along the boundaries, a union of n-copies of ($B(1), \partial B(1)$), $(K(j), \partial K(j))$ and $\bigcup_{i=1}^{s}\left(M\left(n_{i}\right), \partial M\left(n_{i}\right)\right)$ to $(B(n+s+1), \partial B(n+s+1))$. By using Van Kampen's theorem and Mayer Vietoris exact sequence, we can show $\pi_{1}(X)=0$, $H_{2}(X)=H_{2}(M)$, and $i(X)=j$. Therefore X is diffeomorphic to M by Proposition 1. Hence it follows that M admits a codimension 1 foliation. It is similar for the case $j=-1, \infty$.

References

[1] N. A'Campo: Feuilletages de codimension 1 sur des variétés de dimension 5. C. R. Acad. Sci. Paris, 273, 603-604 (1971).
[2] D. Barden: Simply connected five manifolds. Ann. Math., 82, 365-385 (1965).
[3] H. B. Lawson: Codimension-one foliations of spheres. Ann. Math., 94, 494-503 (1971).
[4] S. Smale: On the structure of 5-manifold. Ann. Math., 75, 38-46 (1965).
[5] C. T. C. Wall: Diffeomorphisms of 4-manifolds. J. London Math. Soc., 39, 131-140 (1964).

