90. On Normal Approximate Spectrum. V

By Masatoshi FUJII

Department of Mathematics, Osaka Kyoiku University

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1973)

1. Introduction. In our previous notes [4]–[7] and [9], we have discussed some properties of the normal approximate spectra of operators on a Hilbert space \mathfrak{H} .

A complex number λ is an approximate propervalue of an operator T on \mathfrak{F} if there is a sequence $\{x_n\}$ of unit vectors in \mathfrak{F} such that

(*) $||(T-\lambda)x_n|| \rightarrow 0$ $(n \rightarrow \infty)$. { x_n } is called a normal approximate propervectors belonging to λ . The set $\pi(T)$ of all approximate propervalues is called the *approximate spectrum* of T. If { x_n } satisfies (*) and

(**) $||(T-\lambda)^*x_n|| \to 0 \qquad (n \to \infty),$

then λ is called a normal approximate propervalue of T and $\{x_n\}$ normal approximate propervectors belonging to λ . The set $\pi_n(T)$ of all normal approximate propervalues of T is called the normal approximate spectrum of T.

Bunce [2] initiated to discuss the mutual dependency among the approximate propervalues of an operator T and the characters of the unital C^* -algebra \mathfrak{A} generated by T. He established, among others, the reciprocity for hyponormal operators. The reciprocity for general operators is obtained in [4] and [9]. In the present note, we shall give an alternative proof of the reciprocity basing on the Berberian representation of an operator established by Berberian [1]:

Theorem A (Berberian). For a Hilbert space \mathfrak{H} , there is a Hilbert space \mathfrak{H} such that

(i) an operator T acting on \mathfrak{H} is represented by an operator T° acting on \mathfrak{K} which satisfies

(1) $\pi(T) = \pi(T^0) = \sigma_p(T^0)$

where $\sigma_p(T^0)$ is the point spectrum of T^0 , and

(ii) the Berberian representation: $T \rightarrow T^0$ is *-isomorphic and isometric.

In the remainder of the present note, we shall give another proofs of theorems of Hildebrandt [8] and Bunce [3] also basing on the Berberian representation.

2. Reciprocity. Let \mathfrak{A} be the C*-algebra generated by an operator T and the identity. By a *character* of \mathfrak{A} we mean a multiplicative No. 6]

(2)

linear functional of \mathfrak{A} . We shall show the following reciprocity theorem proved in [4] and [9]:

Theorem 1. $\lambda \in \pi_n(T)$ if and only if there is a character ϕ of \mathfrak{A} such as $\phi(T) = \lambda.$

We need the following lemma: **Lemma 2.** Let λ be a normal propervalue of T and x a normal propervector of unit length belonging to λ , that is, (3) $Tx = \lambda x$ and $T^*x = \lambda^* x$. Let $\phi(A) = (Ax|x)$ (4)Then ϕ is a character of \mathfrak{A} . for every $A \in \mathfrak{A}$. We shall give three proofs of the lemma. First proof. By (3), we have (2) and (5) $\phi(T^*) = \lambda^* = \phi(T)^*,$ so that we have $\phi(T^{*m}T^n) = (T^{*m}T^nx|x) = (T^nx|T^mx) = \lambda^n\lambda^{*m} = \phi(T)^n\phi(T^*)^m$ for $m, n=0, 1, 2, \cdots$. Similarly, we have $\phi(T^mT^{*n}) = \phi(T)^m \phi(T^*)^n.$

Hence ϕ is multiplicative on \mathfrak{P} which is the algebra of all polynomials of the form $p(\lambda, \lambda^*)$. Since \mathfrak{P} is dense in \mathfrak{A} and ϕ is bounded, ϕ is multiplicative on \mathfrak{A} .

Second proof. Let

 $\ker \phi = \{A \in \mathfrak{A}; \phi(A) = 0\}.$ Since, by (3), we have

$$(ATx|x) = \lambda(Ax|x) = 0,$$

(TAx|x) = (Ax|T*x) = $\lambda(Ax|x) = 0,$

for every $A \in \ker \phi$, and since $\ker \phi$ is self-adjoint, $\ker \phi$ is an ideal of a. Therefore, ϕ is a character of a since ker ϕ is a maximal ideal of a.

Third proof (K. Tamaki). The novelty of the proof is its elementary character. It is sufficient to show that

(6)
$$\phi(AT) = \phi(A)\phi(T)$$
 and $\phi(TA) = \phi(T)\phi(A)$
for every $A \in \mathfrak{A}$. Since (2) and $\phi(T^*T) = |\lambda|^2$, we have
 $\phi((T-\lambda)^*(T-\lambda)) = \phi(T^*T-\lambda^*T-\lambda T^*+|\lambda|^2)$
 $= \phi(T^*T)-\lambda^*\phi(T)-\lambda\phi(T^*)+|\lambda|^2$
 $= 0.$

By the Schwarz inequality, we have

 $|\phi(AT) - \phi(A)\phi(T)|^2 = |\phi((T-\lambda)A)|^2$ $\leq \phi((T-\lambda)^*(T-\lambda))\phi(AA^*)=0.$ Similarly, $\phi(TT^*) = |\lambda|^2$ and $\phi((T-\lambda)(T-\lambda)^*) = 0$ imply $|\phi(TA) - \phi(T)\phi(A)|^2 = 0.$

Hence, (6) is proved.

Proof of Theorem 1. Suppose $\lambda \in \pi_n(T)$. Then λ is a normal propervalue of T^0 by Theorem A. Let z be a normalized normal propervector of T^0 belonging to λ . Put

$$\phi^{0}(A^{0}) = (A^{0}z|z)$$

for every $A^0 \in \mathfrak{A}^0$, where \mathfrak{A}^0 is the C^* -algebra generated by T^0 and the identity. Then ϕ^0 is a character of \mathfrak{A}^0 by Lemma 2. Since \mathfrak{A}^0 is isometrically isomorphic with \mathfrak{A} by Theorem A, $\phi(A) = \phi^0(A^0)$ gives a character ϕ of \mathfrak{A} with $\phi(T) = \lambda$.

The remainder half of the proof is same as that of [4; Theorem 1]. Suppose that $\lambda \notin \pi_n(T)$. Then, by [4; Lemma 1], there is $\varepsilon > 0$ such as (7) $(T-\lambda)^*(T-\lambda)+(T-\lambda)(T-\lambda)^* \ge \varepsilon$. Since ϕ is a character satisfying (2), we have

$$\begin{split} \varepsilon &\leq \phi((T-\lambda)^*(T-\lambda) + (T-\lambda)(T-\lambda)^*) \\ &= \phi(T-\lambda)^*\phi(T-\lambda) + \phi(T-\lambda)\phi(T-\lambda)^* \\ &= 0, \end{split}$$

which is a contradiction.

3. Boundary spectra. In [5], we have proved the following theorem which is stated without proof in [8; Satz 2(ii)]. Here we shall give an alternative proof using the Berberian representation:

Theorem 3 (Hildebrandt). If $\lambda \in \partial W(T) \cap \pi(T)$, then $\lambda \in \pi_n(T)$, where ∂S is the boundary of S.

Proof. The hypothesis implies that $\lambda \in \partial W(T^0) \cap \sigma_p(T)$, so that λ is a normal propervalue by a theorem of Hildebrandt [8; Satz 2(i)]. The remainder of the proof runs along the line of the proof of [6; Theorem 1].

4. Joint approximate spectrum. The notion of the joint approximate spectra of operators is introduced by Bunce [3]. Following after a reformulation of Nakamoto and Nakamura [10], we shall say a set of complex numbers $\lambda_1, \dots, \lambda_n$ is a *joint approximate propervalue* of operators T_1, \dots, T_n if there is no $\varepsilon > 0$ such as

(8)
$$\sum_{i=1}^{n} (T_i - \lambda_i)^* (T_i - \lambda_i) \ge \varepsilon,$$

which is equivalent to state that there is a sequence $\{x_k\}$ of unit vectors such as

 $(9) \qquad \qquad \|(T_i - \lambda_i) x_k\| \rightarrow 0 \qquad (i = 1, 2, \cdots, n),$

as $k \to \infty$, cf. [4; §3]. The set $\pi(T_1, \dots, T_n)$ of all joint approximate propervalues is called the *joint approximate spectrum* of operators T_1, \dots, T_n . By the definition, clearly we have

(10) $\pi(T_1, \cdots, T_n) \subset \pi(T_1) \times \cdots \times \pi(T_n).$

A main result of [3] is the following existence theorem:

Theorem 4 (Bunce). For an abelian family of operators T_1, \dots, T_n , the joint approximate spectrum is a nonvoid compact set.

In [3; Propositions 1-2], Bunce proved the theorem through an inductive argument based on the following theorem:

Theorem 5 (Bunce). Let T_1, \dots, T_n be commuting operators. If $(\lambda_1, \dots, \lambda_n) \in \pi(T_1, \dots, T_{n-1})$, then there is $\lambda_n \in \pi(T_n)$ such that $(\lambda_1, \dots, \lambda_n) \in \pi(T_1, \dots, T_n)$.

Proof. In the construction of Berberian [1], \Re includes all bounded sequence of \mathfrak{H} as elements, so that $z = \{x_k\} \in \Re$ and

(11) $(T_i^0 - \lambda_i)z = 0$ $(i=1, 2, \dots, n-1),$

by the hypothesis, if $\{x_k\}$ satisfies (9). Define

 $\mathfrak{M} = \{ z \in \mathfrak{R} ; \ T^{\scriptscriptstyle 0}_i z = \lambda_i z (i = 1, 2, \cdots, n - 1) \}.$

Then, by (11), $\mathfrak{M} \neq 0$ is a (closed) subspace of \mathfrak{R} which is invariant under T_1, \dots, T_n since they are commuting operators.

If there is no $(\lambda_1, \dots, \lambda_n) \in \pi(T_1, \dots, T_n)$, then there is an $\varepsilon > 0$ which satisfies (8), so that we have

$$\sum_{k=1}^{n} (T_{i}^{0} - \lambda_{i})^{*} (T_{i}^{0} - \lambda_{i}) \geq \varepsilon,$$

by Theorem A. Hence we have

(12)
$$\varepsilon \leq \sum_{i=1}^{n} \| (T_i^0 - \lambda_i) y \|^2 = \| (T_n^0 - \lambda_n) y \|^2$$

for every $y \in \mathfrak{M}$ with ||y|| = 1. From (12), we can deduce that $\lambda_n \notin \pi(T_n^0|\mathfrak{M})$ where $T_n^0|\mathfrak{M}$ is the restriction of T_n^0 on \mathfrak{M} . Since λ_n was arbitrary, we can finally deduce that $\pi(T_n^0|\mathfrak{M})$ is empty which is a contradiction.

References

- S. K. Berberian: Approximate proper vectors. Proc. Amer. Math. Soc., 13, 111-114 (1962).
- [2] J. Bunce: Characters on singly generated C*-algebras. Proc. Amer. Math. Soc., 25, 297-303 (1970).
- [3] —: The joint spectrum of commuting nonnormal operators. Proc. Amer. Math. Soc., 29, 499-505 (1971).
- [4] M. Enomoto, M. Fujii, and K. Tamaki: On normal approximate spectrum. Proc. Japan Acad., 48, 211-215 (1972).
- [5] M. Fujii and R. Nakamoto: On normal approximate spectrum. II. Proc. Japan Acad., 48, 297-301 (1972).
- [6] —: On normal approximate spectrum. IV. Proc. Japan Acad., 49, 411– 415 (1973).
- [7] M. Fujii and K. Tamaki: On normal approximate spectrum. III. Proc. Japan Acad., 48, 389-393 (1972).
- [8] S. Hildebrandt: Über den numerische Wertebereich eines Operators. Math. Ann., 163, 230-247 (1966).
- [9] I. Kasahara and H. Takai: Approximate propervalues and characters of C^* -algebras. Proc. Japan Acad., 48, 91–93 (1972).
- [10] R. Nakamoto and M. Nakamura: A remark on the approximate spectra of operators. Proc. Japan Acad., 48, 103-107 (1972).

No. 6]