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Introduction. In this paper we shall introduce the oscillatory
integral of the form Os—”e‘““fp(é, x)dxdé for a C=-function p(&, x) of

class { (defined in Section 1), and by using this integral study the
algebra of pseudo-differential operators of class ST, ,,0=<d=<p=1,d<1,
whose basic weight function 2=2(x, &) varies even in « and may increase
in polynomial order.® The Friedrichs part P, of the operator P of
class S7,, will be defined as in Kumano-go [6]. Then, the L*-
boundedness for the operator P of class S, , for §<p, can be proved
by using Py and the Calderon-Vaillancourt theorem in [1]. We have to
note that all the results obtained there hold even for operator-valued
symbols as in Grushin [3].

Next we shall give a sufficient condition in order that an operator
of class S7,, is Fredholm type. Finally we shall derive a similar
inequality to that of Grushin [3] for an operator with polynomial coef-
ficients and with mixed homogeneity in (x, &), and give a theorem on
hypoellipticity at the origin.

All the theorems are stated without proofs and the detailed descrip-
tion will be published elsewhere.

§1. Oscillatory integrals.

Definition 1.1. We say that a C-function p(¢, ®) in R}, belongs
to a class Ay, —oo<m<o0,0=5<1, when for any multi-index «, g we
have
L1 D&, 2) S C, LaHtegHm+ote!
for constants C,, and l;, where p{§=0;Dip, D,,=—19/dx;,0.,=03/0&;,
j=1, -, m,x>=v1+|2f, (E)=v1+[EF. We set

A=U U Jp

0=50<1 ~oo<m< oo

(cf. [8D).
Definition 1.2. For a p(§, x) ¢ ] we define the oscillatory integral

O;lp] by
* R. Beals and C. Fefferman have reported to us that they discovered a new
class S{;‘f ;" of pseudo-differential operators, which is defined by basic weight func-

tions @(x,&) and ¢(x,£) depending on « and &, and covers Hormander’s class S7;
in [4].
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O,[p]= os—f f -1 tp(e, x)dwde

—1lim ”e‘”'%(&, D&, w)dade,
e—0

where dé=2r)""d&, - =&+ - - - +x,&, and y.(&, x) =y(e&, ex), 0<e <1,
for a x(&, «) € S (the class of rapidly decreasing functions of Schwartz)
in R}, such that x(0,0)=1.

Lemma 1.3. i) For a p(&, x) e JAr we choose positive integers 1
and U such that —2l1(1—d)+m<—n and —2I'+Max,, o, {l,}<—n.
Then we can write O,[p] as

0.lp] =”e““”'5<x>‘“'<De>”'{<E>‘”<Dz>”10($, w)}dxds,

and we have for L,=2(1+1) |Oipl|EC|p[™ with a constant C inde-
pendent of p(§, x), where |p|™ =Max,,, <, inf {C, , of (1.1)}.
ii) For p,& ) e A, j=1,2, we have
Os[ae,pl * pz] = Os[pl(ixjpz —aejpz)],
Os[axjpl * pz] = Os[pl(isjpz - axjpz)] .
§2. Class 87, ; of pseudo-differential operators.
Definition 2.1. We say that a C~-function A(z, €) is a basic weight
function when A(z, §) satisfies for constants 4,, 4, ; and A,

1.2

2.1 1=z, §) S Aa)(E) (r,20),
2.2) [2i5(x, 8|S A, A, E)r1F1 -l 0<6<1),
2.3) Ax+y,H=ALy> A, &) (z,=20).

Definition 2.2. We say that a C>-function p(x, &) belongs to a
class 87, ;, 0<6=<p=<1, when

2.4 [0 (@, )| C, A, §)m+otFi-ell (cf. [4D),
and the pseudo-differential operator P=p(X, D,) is defined by
2.5) Pu@=[e=p, Oueds  forues,

where ﬁ(é):je““"fu(x’)dx’ is the Fourier transform of u ¢ .

Remark 1°. S}, ; makes a Fréchet space by semi-norms |pf™,
l:()’ 1’ 2’ .+« defined by
|pf™ = Max sup {|p(x, &)|A(x, &1 elal),

lat+Blsl (2,6)
2°, It is easy to see that P is a continuous map of S into S, so that

from Theorem 2.5 P can be extended uniquely to the map of S into S’
by (Pu,v)=(u, P**v) for ue S, veS.
Theorem 2.3. Let P,=p,X,D,) e S, j=1,2. Then, P=P,P,
€ Sy and setting
{pa(x, O =p{" (@, O)Py(,8) (e Spylym-e-2ld),

7,,0(, 5)=Os—”e"'”'”1o£’>(x, §+0DD.y (@ 4+, E)dydy
we have for any integer N >0
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@6 P =3 __p @ O+N 3 jil—‘”—r, S, £)d8.

Irl=N
The set {r,,,(x, ©)} 0,1 i bounded in Sy e-oir,
Lemma 2.4. Define a class ST of double symbols p(&, 2/, &) by
|p& (&, @, &) |SC, 0 A&, &)™ 1A, &)+ 2, &)1 A2, &) =PIl
Then, the operator P=p(D,,X’, D,.) defined by

N\
Pue)= Os—fje'””“‘”p(é, o, EYENde'ds  forue S
belongs to Sy, and setting
(2, &) =p{%" (&, x, &) (e Spim=te=alal),
7, o2, s>=03—” e pa0 (& 10y, @+, £)dydy

we can write o(P)(x, &) in the form (2.6) for any N>0. The set
{r.o(x, 8)}19151 18 bounded in Sy~ =,
Theorem 2.5. For P=p(X,D,) e S}?,, the operator P* defined
by (Pu,v)=(u, P®v) for u,v e S belongs to ST, ,, and setting
{105,*)(96 O=(—D'"p&(x, & (e 87, fp=o1),

r@, =0, [[ev1(— 1" bRty e+ opdydy
we have for any N>0
a(P‘*’)(x,S):} Z p§*>(x &+NY, %fr;j@)(:)s, &)de.
7!

Irl=N

The set {r%(x, &)},5 <1 18 bounded in Sy, e,
Let q(0) be a C~- and even-function such that Jq(a)zda_—-l and

supp ¢C{o € R"; |¢|<1} and set
F(z,&; =2z, 8)""q(({—8) A(x,£)7)  for z=(p+d)/2.
Theorem 2.6. For P=p(X,D,) e S}, (6<p) define the Friedrichs
part Pr=pp(D,, X', D) by

pp(§, 2,8 =IF(90’, &; Op(’,OF (2, & ; Od¢.
Then, we have Py e S}, , and P—Py e S7;¢~?, and
o(Pp)(x, &) ~p(x, &)+ Z U, 5, (2, O (2, 8),

where ¥, , (x,§) € S;le-1P0-(e-n1ri/2 and the summation is taken over
(a,8,) such that —(p—d|a+p+r|/25—(0—0), i.e., |la+f+7|=2.
Moreover, if p(x, &) is real valued and non-negative, we have
Py, V)=, Pzv) and (Pyu,u)=0 for u,veS.

Theorem 2.7. Let P=p(X,D,) e S}, (6<p). Then, we have for

some | and a constant C
|Pull=Clp[®l|ulls  for we L*(R").

§3. Operators of Fredholm type. In what follows we assume

that

3.1 e LA, &) for some 0<a,<1, 0<g,.
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Consider P=p(X, D,) € S7,,, as the closed operator of L’=L*(R") into
itself with the domain D(P)={u e L*; Pu e L?}.

We say that p(x, &) € ST, , is slowly varying if we have (2.4) for a
bounded function C, ,(x) such that C, ,(x)—0 as |x|—co for =0 (cf. [2]).
Then we have

Theorem 3.1. Let P=p(X,D,) e S}, ,form=0andd<p. Suppose
that p(x, £) is slowly varying and satisfies conditions:

{lng;w, Op(w, &) C., (@), §01-r1el

[p(x, &)|=Ct(z, )™  0<Cy, 0571
for large |x|+|&|, where C' ,(x) are bounded functions such that C' 4(x)
—0 as [x|—>oo for B#£0. Then, P is Fredholm type in L?, and there
exist parametrices Q and Q' in S;7% such that
3.2) QP=I+K oand QP¥=I+K,
where K and K’ belong to S;2, and are compact in L*. (cf. [4], [7],[9])

Remark. When A(z, §)—co as |2|—oco, symbols of class ST, ,(6<p)
are always slowly varying in S7, ., for 6<¢’'<p.

§4. Examples. Letm=(m,, ---,m,, mi,---,m;) be amulti-index
of positive integers m; and m;. Consider an operator L(x,%,D,,D,)
in R X RE with polynomial coefficients and of the form

4.1 L(x, 7, 5,77)=| .Z& a, (@, P&,
and set .
(4.2) L@ 0,6 D= 3 a,@57E 0",

where y:(g’ ?)’ gz(yly te ’ys), ?72(?/8+19 e 7yk) for Sék,
=0y, Uy @y O T=(11y s Trs Vo =+ 5T 0y =5 0),
la:ml=a/m+ - +oy /My t+og/mi+ - -t/ my,
(@, r=ap- - - apyi- -y, € =& - Lot -y,
Now setting m=Max {m,, m)} we assume that there exist two real

vectors p=(o,, -+, Pns 015+, 00, 0=(01, + -+, 0y, 0%, - -+, 05,0, - - -, 0) such
that
(43) (i) pj=GI:m/mj’ j—_—]—,""n’
’ (i) p}>d,20, om;zm, j=1,---,k,
and
4.4) Lt~ (x, ), t*&, ) =t™L(x, §, &, 7) for t>0
where t—v(x9 ?7)=(t—01x1, R t_u”xm f;‘”iyl, T t_a;ys)’

tﬂ(&, 77)=(t”‘$1, ) tpngn’ tpi7]1’ D) tp'lc”k)’
and assume that
(4.5) Lz, 9,&px0 for [z|+|7|x0 and (& 7=0,
which means that L(x,7, &, is semi-elliptic for |x|+|¥%|20. Then
from (4.8)-(4.5) we have for a constant C>0

CY|Lyx, 9,4, IS {Zl |§41m4 25 1@, Gl l"‘9} <C|Ly(,7,& 7l
Jj= Jj=
where
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@ 31= {35 [P0+ 35 [,

Using this we get a basic weight function 2,(x, £)(|y|=1) with parameter
h=(@,7) by 2.(x,8)={1+|L(x,7,& nF"™ (»/=1) for =0 and a,
=Min,g,, {m;/m}. Setting p,(x,&)=L(x,7,&,7 we can check that
Pulw, §) € ST 1, and satisfies the conditions of Theorem 3.1 for r=1 and
for large |x|+|¥%|+|&]. Moreover, we can replace C, ,(x) by bounded
functions C, ,(x, %) such that
(4.6) C.:(x,))—0 as |x|+|¥|—>o0 for p=0.
Then we have for a compact operator K, (X, D,)
4.7 |ull=C|LX, ¥, Dy pullzs+| Kn(X,DJully,  for ueS,.
Moreover, if we add an assumption that the equation L(X, 7, D, pu(x)
=0 (I»|=1) has no non-trivial solution in §,, then by using (4.6) and
the relation: t™|| L(X, 3, D,, pullzs=| Lt (X, §), t*(Dy, Plut|| gz =t Ei=109/
| L(X,t=°"§, D,, t"p)v| 2 for v(x)=ut"x,, - - -, t""x,) we have
4.83) plpllull=C|L(X, 7, Dyypull,y  for weS, and e RF,
where ¢/=(ay, - - -,00),0'=(0}, - - -, 0t) and [y|,,=>%_,|9;/"*. Finally we
have

Theorem 4.1. The operator L(x,¥,D,,D,) which satisfies (4.4)
and (4.5) is hypoelliptic at the origin, if (and only if when § does not
appear) L(X, ¥, D,, pu=0 has no non-trivial solution in S, for |p|=1
and Max,g <, {07} <Minyg;,. {05 /mi}.

Example 1°. L,(x,D,,D,)=D,+%D; in R, X R} (cf. [5]).

m=(1,2), m=2, p=06=2, p,=2, 0,=0.

In this case L,(X, D,, +1)u=0 has no non-trivial solution in S, and
L_(X,D,, £+ 1)u=0 has non-trivial solution e~#*? ¢ S,.
2°. Ly,D,,D)=D,+ix*D, in R, XR; (cf. [10]). m=(1,1), m=1,
o=0=1,0,=k+1,0,=0. In this case L,(X,D,, +1)u=0 has non-
trivial solution in S, for even k and L,(X, D,, —1)u=0 has non-trivial
solution e~=**®+1 for odd k.
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