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1. In this paper, we shall deal with some geometric properties
concerning with the solution space of non-linear partial differential
equations of elliptic type defined on compact manifolds, by using a
unified method, namely that of the "linearization" of the non-linear
operators.

Throughout the present paper, let M denote a compact C-manifold
of dimension n, and C(M) the linear space of C-functions on M with
the C-topology. Further, let m be an arbitrary non-negative integer.
Then we define a (non-linear) differential operator L of order m on M
as a mapping"

L" C(M)C(M),
which can be expressed, locally, in terms of coordinates, as a C-func
tion in the partial derivatives of order m. To state more precisely, let
x, ..., x denote the local coordinates of M with the coordinate domain
U, then the operator" C(U)C(U)induced by L has the form L(u)

F(x, Du), where F(x, y) is an element of C(U R) (N denotes the
number of multi-indices -(,... ,) with ]--m), and D de-
notes the partial derivative /3x;’.../x.

In our case, the linearizaion (the Gateaux derivative) of L at f
C(M) is given by

dfL(u) lim L(f+ hu) L(f).

If L has the local expression as above, it can be expressed by
F(x, y) .dL(u)-- . (

Hence, dL is a linear differential operator with C-coecients of order
m.

The operator L will be called an elliptic operator (o order m),
for each f C(M) and or each local parameter, the highest order
term of dL
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is non-zero or any x e U and e Rn--(O), namely, if dxL is a linear
elliptic operator for every f.

Since the linearization means, in a sense, to replace locally the non-
linear mapping L by an approximating linear mapping, and urther we
know that the dimension o the solution space of a linear elliptic equa-
tion is finite, we may therefore expect that the dimension of the solution
space of any non-linear elliptic equation ought to be finite. This note
is devoted to a verification of this conjecture which is originary due to
M. Ise.

Now we introduce some notations"

{u e C(/) L(u)=0},
T()--(v e C(M) duL(v)=O};

whereby we consider as a topological subspace of C(M) with the
induced topology.

Theorem 1. Let L be a non-linear elliptic differential operator.
Then the solution space is locally a finite dimensional subset in C(M).
More precisely, for any u e there is a neighborhood 1I of u in C(M)
with respect to the C-topology such that 11 is diffeomorphic to a
locally closed set of the finite dimensional vector space T(@).

This theorem is in a sence a generalization of a result o J. Moser
[1], who proved the zero-dimensionality of the solution space when duL
is injective.

The precise statements together with complete proofs, and with
some applications to differential and analytic geometry will be published
elsewhere.

The author wishes to express his gratitude to Professor Mikio Ise
or suggesting the present problem and for his helps.

2. The statement of Theorem I being local in its nature, we
take u e as a fixed element and consider the operator dL. We
choose moreover a Riemannian structure (g) on M, and let dM(g)

/g dx/ /dx denote the volume elements on M, (f, h)0--[ f. h
JM

dM(g) the L-inner product on C(M), and (dL)* the formal adjoint
operator o dL namely for every f, h e C(M)

(duL(f), h)0= (f, (dL)*h)o.
Then, using the theorem of Hodge-Kodaira or the linear elliptic oper-
ator dL, we have the direct decompositions:

C(M)= T((R)) Im (duL)*,
C(M) Ker (dL)* Im duL,

which are orthogona] with respect to the L-inner product.
Thus, we can define the operator:

: C(M)Tu() Im duL,
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by (f)=(f) o(Lf), where the mappings = and are the L2-orthogo
nal projections of T() and Im (dL) respectively.

Theorem 2. maps a neighborhood 1I of u in C(M) diffeomor-
phically onto a neighborhood of (u)=((u), 0).

In order to prove this theorem, we shall utilize a slight variation
o the so-called implicit function theorem, which will be discussed in
the later sections.

By using a standard method o non-linear unctional analysis, the
proof o Theorem 1 can be derived rom this theorem: In fact, let 1I, ,
an be neighborhood respectively, in C(M), T((R)), and Im dL such
that u e 1t, (u) e , 0 e 3 and the mapping : 1I- is diffeomor-
phic. Then a C-mapping Q: 31 .-Ker (duL)* Im dL is defined
such that in the diagram:

C(M) Ker (duL)* Im dL,
the commutative velation Qq-L is valid. If we define the mapping
R: 32-Ker (dL)* by R=’L-, we have

Q(f fi)--(R(f, f), ft.),
where f e (i= 1, 2). Hence it follows that under , (R)={(f, 0) e. R(f, 0) =0} is diffeomorphic to 1. This proves that 1I is
diffeomorphic to the set of zeros of C-functions defined on an open set

in the finite dimensional vector space T((R)) R(., 0): -Ker (dL)*.
:. We sketch here an outline of the proof of Theorem 2: Let

us now consider the two inner-products in C(M) related to dL, which
are defined by

If, h]--j’(dL*dL+-_ 1)f h dM(g),

[f h]--[ (dLduL* + 1)f h dM(g)
M

where k is a non-negative integer and f, h C(M). Denote further
(i-- 1 2). Then,by H(M) the completions of C(M) with respect to [, ]

if we use the Grding inequality and a priori estimate of an elliptic
operator, it is easily verified that H(M) (i--1, 2) are isomorphic to the
Sobolev space, WTM, as Banach spaces.

In this section, we shall consider the case where

Proposition 1. i) L C(M)--,C(M) ean be ezteded to the C-mapping L o H(M) to H-I(M) for ay k/0, ii) Fo f e C(M),
the Gateaux derivative of L) at f coincides with the extension of dL
that is (d]L)()" H(M)-H-(M).
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The proof can be found in a monograph of R. S. PalMs [2].
We consider the extension (dL)" H(M)--.H-(M). An argument

similar to that of the L-orthogonal decomposition theorem shows that
H(M) can be decomposed as follows"

H(M)-T() Im (dL*)+1),
H(M)--Ker (dL)* Im (dL)/1,

and their decompositions are orthogonal in the L-inner product, too.
Then it is easy to see that the restriction (dL)lIm (dL*)/" Im
(dL*)/-.Im (dL) is an isomorphism.

Next we define the operator

" H(M)--.T() Im (dL),
by putting (f)-(f) o(L)f) where f e H(M). From the above
arguments, we have qIH(M)-- for l>=k and IC(M)--, and d@
gives an isomorphism. If we apply the Implicit Function Theorem to
the C-mapping , we have the following proposition.

Proposition 2. maps a neighborhood 1 of u in H(M) dif-
feomorphically onto a neighborhood

_
of (u) in T() Im (dL)(.

This proposition, however, does not immediately lead to our desired
result, because we cannot take in general a sequence {lt}k_>_ k0 such that

lt H(M) --lI for l>= k.
But, if we make use of a result of A. Douglis and L. Nirenberg

[3], we have the following weak form"
Proposition :. There exists a sequence of neighborhoods

of u in H(M) and {!}o of (u) in T((R)) Im (duL)(+1) such that
i) q 11--_ is a diffeomorphism for
ii) C(M) II-C(M) 11, C(M) --C(M) for l, k>_ ko.
It ollows then immediately rom Proposition 3 that gives a local

diffeomorphism.
4. Under some additional assumptions, we shall state more pre-

cise results for the solution spaces. Namely, we introduce the notations"

p-- Min (dimKerd]L),

0--{u e C(M) L(u)--O, dim Ker dL=p},
Theorem 3. 0 is open in and further o is a p-dimensional

smooth manifold which is tangent to the ane subspace u+ T() at
Ue(R)o.

L" C(M)-C(M) will be called an analytic operator along the
fiber, if for each local expression of L, F(x, y()) is an analytic function
of

Theorem . I L is analytic along the fiber, the solution space
is an analytic space in the usual sense.

The proof of this theorem is a slight modification o tha of
Theorem 1.
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o Finally, we note that our results in the preceding sections
can be extended to the case o operators acting on the space o sections
o fiber bundles, ollowing to the formulation of R. S. Palais [2].
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