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128. Some Relative Notions in the Theory
of Hermitian Forms

By Yukio MATSUMOTO®
University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., Oct. 12, 1973)

In the ‘classical’ surgery theory on compact manifolds, all
Hermitian forms to be considered are nonsingular [5]. However, in
recent developments in surgery theory [2], [4], we have encountered a
some-what curious situation, in which a homomorphism of rings 2: R—S
is given, and Hermitian forms to be considered are defined over R and
nonstngular over S. For example, consider a homomorphism % : Z[t,t7']
—Z defined by h(t)=1. Then it is proven that the ‘Witt groups’ of
+ t-Hermitian forms over Z[t,¢ '] which become nonsingular over Z
are isomorphic to the higher dimensional knot cobordism groups. See
[3], [4].

In this note we shall formulate (§2) some basic notions concerning
the Hermitian forms of the above type, in the framework of, or as a
variant of, Wall’s L-theory [5] [6], and discuss some elementary pro-
perties. We also give an algebraic proof of a cancellation theorem**
which was proven in [4] by a topological method.

Conventions. We always consider rings with 1, not necessarily
commutative, satisfying the condition: The rank of a free module
over the ring is well-defined. All modules will be finitely generated
right modules. Let R be a ring, V a quotient group of K,(R)=GL(R)/
E(R). A basis of a free R-module is V-equivalent to another basis if
the transformation matrix is V-simple, in other words, if it represents
the zero element of V. A free module with a fixed V-equivalence class
of bases is said to be V-based, and any basis in the class is called a
V-preferred basis. We sometimes omit the prefix ‘V-’ if it is obvious
in the context.

1. w-quadratic forms (The main reference is [5].). We fix a
ring R with (additive) involution a—a& such that eb=ba, and a=a
(va,becR). Note that 1=1. A unit % is admissible if u ¢ Center(R)
and #=u"'. Let M be an R-module, # an admissible unit. A u-quadratic
form (2, p) on M consists of functions 1: M XM—R, p: M—R/{a—au|

*)  The author is partially supported by the Fijukai Foundation.
**)  Cappell-Shaneson has also given a proof [2, Lemma 1.3]. However, a
property of S-isometries (in our terminology) in their proof does not seem to be
so trivial as they asserted. It will be proven in the present paper, Theorem 3.
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a € R} satisfying the following five properties:
(i) 21is R-linear in the second variable,

(i) A, v) =2y, ©)u,

(i) Az, ©) =p@) + p@)u,

(iv)  p@+y) =p@) + o)+ 2z, y),

(v) plee)y=aux)a, for all x,ye M ac R.

If M is a projective module, there is a more convenient definition
[6, Theorem 1], see also [1]. One should remark that 1is u-Hermitian
in the sense of Bourbaki, ALGEBRE, ch. 9, §3, n°1.

We will call the triple (M,2,) a u-quadratic module over R.
Capital letters X, Y, ete. denote u-quadratic modules. The orthogonal
sum X | Y is defined as usual.

A wu-quadratic module X=(M, 2, ) is said to be nonsingular if M
is a free V-based module and the associated R-homomorphism A1: M
—Hom (M, R) defined by (AA(x))(y) =A(x, y) is a V-simple isomorphism.
Our definition is clearly more restrictive than the usual one [6].

A typical example of a nonsingular u-quadratic module is a (u-)
standard plane (eR®fR,2,p) defined by ile, N=1, A(f,e)=u, p(f)
=u(e)=0, where eR®fR denotes a free module of rank 2 with basis
{e, f}. An orthogonal sum of copies of it is called a (u-) kernel.

We quote a characterization of a kernel due to Wall [5, Lemma
5.3]:

Lemma 1. A nonsingular u-quadratic module (M, 4, 1) is a kernel
if and only if M has o free V-based submodule H, with a preferred
basis extending to one of M, and so defining a preferred class of bases
of M/H, such that A(HXxH)=0, p(H)=0, and the map M/H
—Homz(H, R) induced by 2 is a V-simple isomorphism.

Such a submodule is called a subkernel.

2. Relative notions. We throughout fix an onto homomorphism
h: R—S of rings with involutions such that 2(@)=nh(a) (va € R). Then
the image of an admissible unit is admissible, and, as usual, a u-
quadratic module X=(, 2, ) over R gives rise to an i(u)-quadratic
module X®,S=M®&zS, 2, ) over S. If the induced i(u)-quadratic
module X®.,S is nonsingular, X is said to be S-nonsingular. (A
quotient group V of K,(S) is understood to be fixed.) To abbreviate
the terminology, we will henceforth refer to an S-nonsingular u-
quadratic module over R as an S-nonsingular u-form. For an S-
nonsingular u-form (M, 2, ), M®,S is an S-free module by our defini-
tion of nonsingularity, but M is not necessarily R-free. A set of ele-
ments of M, {x,, - - -, z,} is called a pre-basis if the image {x,®1, - - -, z,
®1} is a preferred basis of M®zS. If M itself is R-free, we call X a
free u-form. Also it is always assumed that a basis of M is chosen so



No. 8] Relative Notions in Hermitian Forms 586

that it is a pre-basis.

An S-nonsingular u-form X=(M, 2, p) is said to be null-cobordant
if there exists a submodule HC M, not necessarily a direct summand,
such that 2(H X H)=0, p(H)=0 and H is mapped onto a subkernel of
X® S under the canonical mapping M—-M®zS. Note that X®zS is,
then, a kernel by Lemma 1. Following Cappell and Shaneson [2] we
call such a submodule H a pre-subkernel. (In our previous paper [4],
H was called a Seifert subkernel.) X is stably null-cobordant if an
orthogonal sum X | (a kernel) is null-cobordant.

‘Witt groups’. Let Q(h) be the Grothendieck group of all iso-
morphism classes of S-nonsingular u-forms, and let J1 (k) be the sub-
group generated by all stably null-cobordant forms. The ‘Witt group’
of S-nonsingular u-forms is defined by the quotient Q! (h)/JI(h).
Since this generalizes the (even dimensional) Wall groups L,,, we will
denote it by _L7(h). Cappell-Shaneson’s I'-groups [2] and P-groups
introduced in [4] are formulated as various special cases of these _[-
groups.®

A similar construction gives the ‘Witt group’ F_L7 (k) of all S-non-
singular free u-forms. There is a natural homomorphism p: F_L7(h)
— L7 (h).

Proposition 2. p s an isomorphism.

3. S.isometries. A convenient class of morphisms in the cate-
gory of S-nonsingular u-forms is that of S-isometries defined as fol-
lows: Let X=W1,2,p), Y=(N,&,7) be S-nonsingular u-forms. An
R-homomorphism ¢: M—N is an S-isometry if (i) ¢ preserves u-quad-
ratic forms: &(p(x), o(¥)=2(x, ¥), ylp(x))=u(x) for all ¢,y ¢ M, and (ii)
o®1: MR RS—N®zS is a V-simple isomorphism. (Thus ¢®1 is an
isometry in the usual sense.) ¢ is not necessarily injective nor sur-
jective, In this section we will prove

Theorem 3, Let ¢: X—Y be an S-isometry. Then X is stably
null-cobordant if and only if Y is stably null-cobordant.

The ‘only if’ part is not difficult. The proof of the converse is
based on the following ‘restricted case’.

Lemma 4. Let ¢: X—Y be as above, and suppose that X is a free
u-form. Then if Y is stably null-cobordant, so is X.

Proof. By adding copies of standard planes, we may assume that
Y=(N, ¢, is actually a null-cobordant u-form with a pre-subkernel
KCN. Let n:N—N/K be the quotient map. The proof is divided
into 3 steps.

Q) If the composite mop is onto, then X is null-cobordant. In

* For example, let h: Z[t, t"11-Z be a homomorphism h(t)=1. Then Iy, (h)
:.Ego_)l)n(h), and Pzn(h)z.fgl)_}l)nt(h), where {0} stands for a trivial group.
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fact ¢~'(K) is a pre-subkernel of X.

(2) In the case Coker (zop)=0, proceed as follows. Consider an
orthogonal sum Y'=Y | (a standard plane with basis {e, f}). Then
K'=K®eR is a pre-subkernel of Y’. Let z, be an element N, and
define an R-homomorphism ¢ : M®xRPYyR—NDeRDfR by setting
o' | M=o, ¢(®)=2De, ¢'(y)=Ff, where MPxRDyYR is a direct sum of M
and a free module with basis {z,y}. Define a u-quadratic form (¥, )
on M@xR®yYR as follows: (X, )| M=@, ), ¥(m,x)=E@(m),z,) (¥ym
e M), ¥(m,y)=0(vm e M), p/'(@®)=7(z), (¥ =0, ¥(z,y)=1, and 2'(y, x)
=u. Then ¢': X’>Y’ turns out to be an S-isometry, where X'=(M
D@rRDYR, 1, ). Let n’: NOeR®fR—->NDeRDfR/K' be the quotient
map. Then it is easily verified that Coker (z’0¢") = Coker (rop)/n(z,).
Therefore by taking suitable z,, we can make Coker (zog) strictly
‘smaller’.

(8) The u-quadratic module X’ constructed above is isomorphic to
X | (a standard plane).

Proof. Here we use the assumption that X=(M, 1, p) is a free
u-form. Let {m,, ---,m,} be a basis of M, which is also a pre-basis.
Then an isomorphism /: X | (a standard plane with basis {e,, f;D—X’
is explicitly constructed as follows:

I(e)=x—1yc, I(f)=v,
and
I(m)=m;—yeu, i=1,---,s,
where ¢=7(z,) mod {a—du|a e R} and ¢;=2'(m;, ).

The proof of Lemma 4 is now obvious from (1), (2) and (3).

Proof of Theorem 3. First we make a construction. Let {x,, - -,2,}
be a pre-basis of X, and let ¥, - - -, ¥ be indeterminates. We define
a u-quadratic form (2*, #*) on the free module 2¥R®- - -®@x} R as fol-
lows: 2*(xf, ) =(x;, ), p*@F)=pmx;). The u-quadratic form (z¥R
@ - -®xxR, 2*, pi*) is denoted by X*. The canonical map p*: X*—X
defined by p*(x})==, is clearly an S-isometry. We call a pair (X*, p*)
a free core of X, or, {x,, - - -, &, }-free core of X. See [4].

Now the proof of the ‘if’ part of Theorem 3 goes as follows. Sup-
pose Y is stably null-cobordant. Let (X*,p*) be a free core of X.
Then since pop* :X*—Y is an S-isometry and X* is a free u-form, X*
is stably null-cobordant by Lemma 4. Therefore X is stably null-
cobordant by applying the ‘only if’ part of Theorem 3 to the S-isometry
o*: X*—X. This completes the proof.

4, A cancellation theorem. We continue to fix an onto homo-
morphism h:R—S. Let X=(,2,p), Y=(,&,7 be S-nonsingular
y-forms.

Cancellation theorem. Suppose X |Y and Y are stably null-
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cobordant, then X is also stably null-cobordant.
We need a lemma due to Cappell-Shaneson [2].
Lemma 5. Let Y=(N,&,7) be a stably null-cobordant u-form,

then there exists a diagram of S-isometries K+¢—Y*—’i>Y in which
K is a kernel.
Proof. We may assume that Y is actually null-cobordant. Let
HC N be a pre-subkernel of Y. One can choose a pre-basis {e,, - - -, ¢,, f1,
-+, f2}TN sothat {e,, ---,¢,}CH. Define (Y*,0*) as an {e, ---,e,, f,
-+, fr}-free core of Y. Let K= | 7_,S,, where S;=(x;RPy.R, 2;, 1t;) is
a standard plane. Then an S-isometry ¢: Y*—K is explicitly defined
as follows:

pled) =3 280 1),
and
o(fE) =Y+ 2:Cs, +§c & (Jr 1),
where ¢, =7(f,) mod {a—au|a ¢ R}.
Proof of cancellation theorem. By Lemma 5, we have S-isome-

tries KLY*i*—)Y in which K is a kernel. By making orthogonal
sums we have a diagram of S-isometries X | K« X | Y*-X | Y, but
X | Y is stably null-cobordant by the hypothesis. Therefore, by
Theorem 3, X | K is stably null-cobordant. This completes the proof.
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