127. On Fourier Coefficients of Certain Cusp Forms

By Mutsuo Watabe
Department of Mathematics, Gakushuin University, Tokyo
(Comm. by Kunihiko Kodaira, M. J. A., Oct. 12, 1973)

§1. Congruences on certain bases of $S_{k}(\Gamma)$.
We shall denote by Γ the group $S L(2, Z)$. The set of integral automorphic forms (cusp forms) of weight k (k being a positive integer) with respect to Γ forms a vector space $G_{k}(\Gamma)\left(S_{k}(\Gamma)\right)$ over the complex number field C, whose dimension is known to be (cf. [7] p. 48) :

$$
\begin{aligned}
\operatorname{dim} G_{k}(\Gamma) & = \begin{cases}{[k / 12]} & (k \equiv 2(\bmod 12)), \\
{[k / 12]+1} & (k \not \equiv 2(\bmod 12))\end{cases} \\
\operatorname{dim} S_{k}(\Gamma) & = \begin{cases}0 & (k=2), \\
{[k / 12]} & (k \not \equiv 2(\bmod 12)), \\
{[k / 12]-1} & (k>2, k \equiv 2(\bmod 12))\end{cases}
\end{aligned}
$$

Any element $\varphi(\tau)(\tau \in C, \operatorname{Im} \tau>0)$ of $G_{k}(\Gamma)$ admits a Fourier expansion in $q=e^{2 \pi i \tau}$:

$$
\varphi(\tau)=\sum_{n=0}^{\infty} \alpha(n) q^{n} ;
$$

we have $\varphi(\tau) \in S_{k}(\Gamma)$ if and only if $\alpha(0)=0$.
Using Eisenstein series, one can obtain bases of $S_{k}(\Gamma)$ as follows. Following the notation in [9], we put

$$
\begin{aligned}
E_{k}(\tau) & =\frac{1}{2} \sum_{\substack{l, m \in \mathbb{m} \\
(l, m) \neq 0,0)}}(l \tau+m)^{-k} \quad(k=4,6,8, \cdots) \\
& =\zeta(k)+\frac{(2 \pi i)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n} \\
& =-\frac{(2 \pi i)^{k} B_{k}}{2 \cdot k!}+\frac{(2 \pi i)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}
\end{aligned}
$$

where $\zeta(s)$ is the Riemann zeta-function, B_{k} is the k-th Bernoulli number and

$$
\sigma_{g}(n)=\sum_{\substack{t \backslash n \\ t>0}} t^{g} \quad(g=0,1,2,3, \cdots) .
$$

We put further

$$
\begin{equation*}
E_{k}^{*}(\tau)=1-\frac{2 \cdot k}{B_{k}} \sum \sigma_{k-1}(n) q^{n} \quad(k=4,6,8, \cdots) \tag{1}
\end{equation*}
$$

so that

$$
E_{k}(\tau)=\zeta(k) \cdot E_{k}^{*}(\tau)
$$

Then the well-known cusp form $\Delta(\tau)$ of weight 12 under the name of Ramanujan's function is written in the form:

$$
\Delta(\tau)=2^{-6} \cdot 3^{-3}\left(E_{4}^{* 3}(\tau)-E_{6}^{* 2}(\tau)\right) .
$$

$\Delta(\tau)$ has the Fourier expansion:

$$
\begin{equation*}
\Delta(\tau)=\sum_{n=1}^{\infty} c(n) q^{n}, \quad \text { with } \quad c(n) \in \boldsymbol{Z} \tag{2}
\end{equation*}
$$

We have furthermore (cf. [7] p. 49)

$$
\begin{aligned}
& S_{k}(\Gamma)=0 \quad(k=4,6,8,10,14), \\
& S_{12}(\Gamma)=[\Delta(\tau)] \text {, } \\
& S_{k}(\Gamma)=\left[\Delta(\tau) \cdot E_{k-12}^{*}(\tau)\right] \quad(k=16,18,20,22), \\
& S_{24}(\Gamma)=\left[\Delta(\tau) \cdot E_{12}^{*}(\tau)+\Delta^{2}(\tau)\right] \text {, } \\
& S_{k}(\Gamma)=\left[\Delta(\tau) \cdot E_{4}^{* a}(\tau) \cdot E_{6}^{* b}(\tau)\right]_{\substack{4 a+6 b=k-12 \\
a, b \in Z, a, b \geq 0}} \quad(k: \text { even integer }>24)
\end{aligned}
$$

i.e., $S_{k}(\Gamma)$ for even integer $k>24$ is spanned by the cusp forms of the type $\Delta(\tau) \cdot E_{4}^{* a}(\tau) \cdot E_{6}^{* b}(\tau)$, where a, b run over all non-negative integral solution of $4 a+6 b=k-12$.

We quote the following result of Siegel [9]. Let $k>2$ and $r=r_{k}$ $=\operatorname{dim} G_{k}(\Gamma)$. Then the function $E_{12 r-k+2}^{*}$ has the Fourier expansion of the form:

$$
c_{k, r} q^{-r}+\cdots+c_{k, 1} q^{-1}+c_{k, 0}+\cdots,
$$

where $c_{k, r}=1$ and

$$
\begin{equation*}
\frac{c_{k, 0} B_{k}}{2 \cdot k}=\sum_{l=1}^{r} c_{k, l} \boldsymbol{\sigma}_{k-1}(l) . \tag{3}
\end{equation*}
$$

Siegel has proved that $c_{k, 0} \neq 0$. We put

$$
\begin{equation*}
c_{k, 0}=c_{k} . \tag{4}
\end{equation*}
$$

Now we have the following propositions.
Proposition 1. Let k be $16,18,20$, or 22 . Then the space $S_{k}(\Gamma)$ is spanned by the function $\Delta \cdot E_{k-12}^{*}$, which we denote by $f^{(k)}$. This function has the Fourier expansion of the form $f^{(k)}(\tau)=\sum_{n=1}^{\infty} a^{(k)}(n) q^{n}$. Then for the coefficients $a^{(k)}(n)$, we have

$$
\begin{equation*}
a^{(k)}(n) \equiv c(n) \quad\left(\bmod c_{k-12}\right) \tag{5}
\end{equation*}
$$

for $n=1,2,3, \cdots$, where $c(n)$ are the coefficients in (2).
Remark 1. The values of c_{k-12} for $k=16,18,20,22$ are as follows (cf. [9]).

k	16	18	20	22
c_{k-12}	$-2^{4} \cdot 3 \cdot 5$	$2^{3.3^{2} \cdot 7}$	$-2^{5} \cdot 3 \cdot 5$	$2^{3.3} \cdot 11$

Remark 2. Our proposition may be more simply expressed by the following "congruence":
(5^{\prime})

$$
f^{(k)}(\tau) \equiv \Delta(\tau) \quad\left(\bmod c_{k-12}\right)
$$

Proof. Since

$$
\Delta(\tau)=\sum_{n=1}^{\infty} c(n) q^{n}, \quad E_{k-12}^{*}(\tau)=1-\frac{2(k-12)}{B_{k-12}} \sum \sigma_{k-13}(n) q^{n}
$$

so that

$$
f^{(k)}(\tau)=\Delta(\tau) \cdot E_{k-12}^{*}(\tau)=\sum_{n=1}^{\infty} c(n) q^{n}-\frac{2(k-12)}{B_{k-12}} \sum_{n=2}^{\infty} \sum_{i=1}^{n-1} c(i) \cdot \sigma_{k-13}(n-i) q^{n} .
$$

As we have $r=1$ in (3), we have just $c_{k-12}=\frac{2(k-12)}{B_{k-12}}$, and as $c(i) \cdot \sigma_{k-13}(n-i) \in Z$, we have the congruence (5) (cf. [8]).

Proposition 2. Let k be any even integer >24 and f be a function of the form $\Delta \cdot E_{4}^{* a} E_{6}^{* b}$ with $4 a+6 b=k-12$, i.e., any element of the base of the space $S_{k}(\Gamma)$ given above. Let the Fourier expansion of f be $f(\tau)=\sum_{n=1}^{\infty} b(n) q^{n}$. Then we have

$$
b(n) \equiv c(n) \quad(\bmod 24)
$$

or more simply $\quad f(\tau) \equiv \Delta(\tau) \quad(\bmod 24)$.
Proof. First we note the following fact. Let $\varphi(\tau) \in G_{k}(\Gamma)$ and

$$
\varphi(\tau)=\Delta(\tau) \cdot\left(1+m_{1} g_{1}(\tau)\right)^{a} \cdot\left(1+m_{2} g_{2}(\tau)\right)^{b}
$$

where a, b are non-negative integers, $m_{1}, m_{2} \in \boldsymbol{Z}$, and $g_{1}(\tau), g_{2}(\tau)$ admit Fourier expansions with integral coefficients in q. Then we have

$$
\varphi(\tau)=\sum_{n=1}^{\infty} c(n) q^{n}+\sum_{n=1}^{\infty} d(n) q^{n},
$$

where $d(n)$ are integers divisible by the G.C.M. $\left(m_{1}, m_{2}\right)$ of m_{1} and m_{2}. This can be seen in the same way as in the proof of Proposition 1, in noticing that

$$
\sum_{n=1}^{\infty} d(n) q^{n}=\varphi(\tau)-\sum_{n=1}^{\infty} c(n) q^{n}
$$

can be written in the form :

$$
m_{1} h_{1}(\tau)+m_{2} h_{2}(\tau)=\left(m_{1}, m_{2}\right) \cdot h_{3}(\tau),
$$

where $h_{i}(\tau), i=1,2,3$ admit Fourier expansions with integral coefficients in q.

The function $f=\Delta \cdot E_{4}^{* a} \cdot E_{6}^{* b}$ in proposition 2 can be considered in virtue of (1) as a function φ above mentioned, where we have

$$
m_{1}=-\frac{8}{B_{4}}=240, \quad m_{2}=-\frac{12}{B_{6}}=-504
$$

so that $\left(m_{1}, m_{2}\right)=24$.
These propositions permit us to transfer the congruences which are known to hold on $c(n)$ to $a^{(k)}(n)$ or $b(n)$. The following are some examples of these congruences.

Firstly, it is known that

$$
c(n p) \equiv 0 \quad(\bmod p)
$$

for all n if $p=2,3,5$ or 7 (cf. [2]).
From Proposition 1 follows therefore

$$
a^{(16)}(n p) \equiv a^{(20)}(n p) \equiv 0 \quad(\bmod p)
$$

for all n if $p=2,3$ or 5 , and

$$
\alpha^{(18)}(n p) \equiv 0 \quad(\bmod p)
$$

for all n if $p=2,3$ or 7 .

Secondly, from Proposition 2, we have

$$
b^{(26)}(p) \equiv 1+p \quad(\bmod 3)
$$

for $p \neq 3$, since

$$
c(p) \equiv 1+p \quad(\bmod 3)
$$

 which is a base of $S_{26}(\Gamma)$.)
§2. Effect of certain Hecke operators on bases of $S_{k}(\Gamma)$.
Let m be any positive integer. The m-th Hecke operator $T_{k}(m)$ operates on $\varphi \in G_{k}(\Gamma)$ as follows and gives an endomorphism of $G_{k_{k}}(\Gamma)$ and $S_{k}(\Gamma)$ respectively (cf. [3], [5]) :

If $\varphi=\sum_{n=1}^{\infty} \alpha(n) q^{n} \in G_{k}(\Gamma)$ is an eigenfunction of $T_{k}(n)$ with the eigenvalue $\gamma(n)$, it is easily seen that

$$
\gamma(n) \cdot \alpha(1)=\alpha(n)
$$

$\varphi \in G_{k}(\Gamma)$ is said to be normalized, if $\alpha(1)=1$. For a normalized integral automorphic form φ, we have thus $\gamma(n)=\alpha(n)$.

Now we have the following theorems:
Theorem 1. Let k be 16,18 or 20 , and p be a prime number such that $p \equiv-1\left(\bmod c_{k-12}\right) \cdot f^{(k)}$ will denote the function $\Delta \cdot E_{k-12}^{*}$ as above. Then we have

$$
f^{(k)} \mid T_{k}(p) \equiv 0 \quad\left(\bmod c_{k-12}\right)
$$

Theorem 2. If $k=22$ or k is an any even integer >24 and f is a function the form $\Delta \cdot E_{4}^{* a} \cdot E_{6}^{* b}$ with $4 a+6 b=k-12$ and if $p \equiv-1$ $(\bmod 24)$, then we have

$$
f \mid T_{k}(p) \equiv 0 \quad(\bmod 24)
$$

Proof of Theorem 1. As f is an eigenfuction of $T_{k}(p)$ with the eigenvalue $a^{(k)}(p)$, we have by virtue of Proposition 1:

$$
f^{(k)} \mid T_{k}(p)=a^{(k)}(p) f^{(k)} \equiv c(p) f^{(k)} \quad\left(\bmod c_{k-12}\right)
$$

Now the following congruences are known to hold:

$$
\begin{array}{lll}
c(p) \equiv 1+p^{11} & \left(\bmod 2^{5}\right)(p \neq 2) & (c f .[1]) \\
c(p) \equiv p^{2}+p^{9} & \left(\bmod 3^{3}\right) & (\mathrm{cf.}[4]), \\
c(p) \equiv p+p^{10} & \left(\bmod 5^{2}\right) & (\mathrm{cf.}[1]) \\
c(p) \equiv p+p^{4} & (\bmod 7) & (\mathrm{cf} .[6])
\end{array}
$$

Hence follows $c(p) \equiv 0\left(\bmod c_{k-12}\right)$ by our assumption $p \equiv-1\left(\bmod c_{k-12}\right)$, which implies our conclusion.

Proof of Theorem 2. Let the Fourier expansion of f be:

$$
f(\tau)=\sum_{n=1}^{\infty} b(n) q^{n} .
$$

Then we have

$$
\begin{aligned}
f(\tau) \mid T_{k}(p)= & p^{k-1} f(p \tau)+\frac{1}{p} \sum_{l \bmod p} f\left(\frac{\tau+l}{p}\right) \\
& =p^{k-1} \sum_{n=1}^{\infty} b(n) q^{n p}+\sum_{n=1}^{\infty} b(n p) q^{n}
\end{aligned}
$$

From Proposition 2 we obtain, in noticing that $p^{k-12} \equiv 1(\bmod 24)$ for $k \geqq 22$, and that Δ is a common eigenfunction of Hecke operators $T_{12}(n)$, $n=1,2,3, \cdots$, the congruence

$$
\begin{aligned}
f(\tau) \mid T_{k}(p) & \equiv p^{k-1} \sum_{n=1}^{\infty} c(n) q^{n p}+\sum_{n=1}^{\infty} c(n p) q^{n} \quad(\bmod 24) \\
& =p^{k-12} \cdot p^{11} \sum_{n=1}^{\infty} c(n) q^{n p}+\sum_{n=1}^{\infty} c(n p) q^{n} \\
& \equiv p^{11} \sum_{n=1}^{\infty} c(n) q^{n p}+\sum_{n=1}^{\infty} c(n p) q^{n} \quad(\bmod 24) \\
& =\Delta(\tau) \mid T_{12}(p)
\end{aligned}
$$

Thus
(7)

$$
f(\tau) \mid T_{k}(p) \equiv c(p) \cdot \Delta(\tau) \quad(\bmod 24)
$$

From the congruences (6) we get $c(p) \equiv 0(\bmod 24)$ for $p \equiv-1(\bmod 24)$. Thus we obtain from (7) our conclusion:

$$
f \mid T_{k}(p) \equiv 0 \quad(\bmod 24)
$$

Remark. In the case $k=22$, we have just $E_{10}^{*}=E_{4}^{*} \cdot E_{6}^{*}$. Theorem 1 can also be proved in the same way as in Theorem 2 but the proof would then become less simple. Theorem 2 for the case $k=22$ can also be proved like Theorem 1, as we have $\operatorname{dim} S_{22}(\Gamma)=1$.

Acknowledgement. The author wishes to express his hearty thanks to Prof. S. Iyanaga, Prof. Y. Ihara and Mr. M. Koike for their kind advice.

References

[1] R. P. Bambah: Two congruence properties of Ramanujan's function $\tau(n)$. J. London Math. Soc., 21, 91-93 (1964).
[2] G. H. Hardy: Ramanujan, Cambridge University Press (1940).
[3] E. Hecke: Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I, II. Math. Ann., 114, 644-671, 672-702 (1937).
[4] D. H. Lehmer: Note on some arithmetical properties of elliptic modular functions. Berkley, date of publication not given (Reference in [8]).
[5] A. Ogg: Modular forms and Dirichlet series. Benjamin (1965).
[6] K. G. Ramanathan: Congruence properties of Ramanujan's function $\tau(n)$. I. J. Indian Math. Soc., 9, 55-57 (1945).
[7] G. Shimura: Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc., Japan, 11 (1971).
[8] J. P. Serre: Formes modulaires et fonctions zeta p-adiques. Summer Inst. on Modular Functions, ANVERS (1972).
[9] C. Siegel: Berechnung von Zetafunktionen an ganzzahlligen Stellen. Nachr. Akad. Wiss. Göttingen Math-Phys., 10, 87-102 (1969).

