126. Complex Structures on $\mathbf{S}^{1} \times \mathbf{S}^{5}$

By Masahide Kato
(Comm. by Kunihiko Kodaira, M. J. A., Oct. 12, 1973)

1. Let X be a compact complex manifold of dimension 3 of which the 1st Betti number is equal to 1 and the 2 nd Betti number vanishes. X has at most two algebraically independent meromorphic functions. In this note we restrict ourselves to the case where there are exactly two algebraically independent meromorphic functions. Then X has an algebraic net of elliptic curves. Furthermore we assume that this net has no base points, in other words, there exists a surjective holomorphic mapping f onto a projective algebraic (non-singular) surface V whose general fibre is an (connected, non-singular) elliptic curve. Finally we assume that f is equi-dimensional (see Remark 1). This note is a preliminary report on some results on complex structures of X. Details will be published elsewhere.
2. Proposition 1. Every fibre of f is a non-singular elliptic curve.

Proposition 2. V is either a projective plane or a surface of general type.

Theorem 1. There exists an unramified covering manifold W of X such that $W \cup\{o n e ~ p o i n t\} ~ i s ~ h o l o m o r p h i c a l l y ~ i s o m o r p h i c ~ t o ~ a ~ 3-~$ dimensional affine variety with an algebraic C^{*} action.

Denote by α the linear transformation of N-dimensional complex affine space C^{N} defined by

$$
\alpha:\left(z_{1}, \cdots, z_{N}\right) \mapsto\left(\alpha_{1} z_{1}, \cdots, \alpha_{N} z_{N}\right)
$$

where $\alpha_{1}^{a_{1}}=\cdots=\alpha_{N}^{a_{N}}=\beta$ for suitable positive integers $a_{j}(j=1, \cdots, N)$ and $0<|\beta|<1$. Then the infinite cyclic group $\langle\alpha\rangle$ generated by α acts on $C^{N}-\{0\}$ freely and the quotient space $C^{N}-\{0\} /\langle\alpha\rangle$ is a compact complex manifold.

Using some results of C. Chevally and M. Rosenlicht (see [8]), we obtain

Corollary. There exists a finite unramified covering manifold of X which is holomorphically isomorphic to a submanifold of $C^{N}-\{0\} /\langle\alpha\rangle$ for some N and α.

Let X_{t} be a small deformation of X. Then we have a small deformation W_{t} of W corresponding to X_{t}. By a theorem of H. Rossi [10], we obtain

Theorem 2. $W_{t} \cup\{o n e$ point $\}$ has a complex structure and be-
comes a Stein space.
3. If X is topologically homeomorphic to $S^{1} \times S^{5}$, then we have, as corollaries to Theorem 1 and 2, the following two theorems.

Theorem 3. $\tilde{X} \cup\{$ one point $\}$ is holomorphically isomorphic to a 3 -dimensional affine variety with an algebraic C^{*} action where \tilde{X} denotes the universal covering manifold of X.

Theorem 4. $\tilde{X}_{t} \cup\{$ one point $\}$ has a complex structure and becomes a Stein space where \tilde{X}_{t} denotes the universal covering manifold of X_{t}.
4. In proving Proposition 1 and the key fact that $\operatorname{dim} H^{1}\left(X, \mathcal{O}_{X}\right)$ $=1$, the following lemma due to K. Akao plays a principal role.

Lemma. Assume that a 3-dimensional compact complex manifold X is a fibre space over a non-singular projective algebraic surface V with projection f satisfying following two conditions,
(1) there exists a finite set of points $\left\{v_{j} ; j=1, \cdots, \rho\right\}$ on V such that $f^{-1}(v)$ is an (non-singular) elliptic curve for each point $v \in V-\left\{v_{j}\right\}$,
(2) $\operatorname{dim} H^{1}\left(X, \mathcal{O}_{X}\right)>\operatorname{dim} H^{1}\left(V, \mathcal{O}_{V}\right)$.

Then there exists a following exact sequence of sheaves

$$
0 \rightarrow \mathcal{O}_{V} \rightarrow R^{1} f_{*} \mathcal{O}_{X} \rightarrow \mathcal{S} \rightarrow 0,
$$

where the support of \mathcal{S} is a finite set of points.
Remark 1. K. Akao proved that $f: X \rightarrow V$ is always equi-dimensional with the aid of the spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(V, R^{q} f_{*} C\right) \Rightarrow H^{p+q}(X, C) .
$$

Remark 2. Let S be an elliptic surface of which the 1st Betti number is odd (i.e., a VI_{0} - class surface or a VII_{0} - class elliptic surface (K. Kodaira [7])). Then every fibre of S is a non-singular elliptic curve. By similar methods of proofs, we can show that the statements corresponding to Theorem 1 and Corollary are valid.

Example (Brieskorn and Van de Ven [1]). Let $a=\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ be a 4 tuple of positive integers and $\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$ the standard coordinate in C^{4}. We define an affine variety $X(a)=X\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ by the equation

$$
z_{0}^{a_{0}}+z_{1}^{a_{1}}+z_{2}^{a_{2}}+z_{3}^{a_{3}}=0
$$

Let S^{7} be the sphere $\sum_{i=0}^{3}\left|z_{i}\right|^{2}=1$. Then the space

$$
\sum(\alpha)=X(a) \cap S^{7}
$$

is a 5 -dimensional oriented differentiable manifold in a natural way. Let $\langle\alpha\rangle$ be the infinite cyclic group acting on $X(\alpha)-\{0\}$ freely generated by the transformation

$$
\alpha:\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \mapsto\left(\alpha^{a_{0}^{-1}} z_{0}, \alpha^{a_{1}^{-1}} z_{1}, \alpha^{a_{2}^{-1}} z_{2}, \alpha^{a_{3}^{-1}} z_{3}\right),
$$

where $\alpha \in C^{*}$ and $|\alpha| \neq 1$. Then $H(\alpha)=X(\alpha)-\{0\} /\langle\alpha\rangle$ is a compact complex manifold of dimension 3. By Proposition 4 in [1], if a_{i} and a_{j} are mutually prime for any $i \neq j$, then $H(a)$ is an elliptic fibre space over a projective plane whose topological model is $S^{1} \times S^{5}$. Every fibre of $H(a)$ is an (connected, non-singular) elliptic curve.

References

[1] E. Brieskorn and A. Van de Ven: Some complex structures on products of homotopy spheres. Topology, 7, 389-393 (1967).
[2] H. Grauert: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann., 146, 331-368 (1962).
[3] H. Grauert und R. Remmert: Komplexe Räume. Math. Ann., 136, 245-318 (1958).
[4] K. Kodaira: On compact analytic surfaces. II. Ann. of Math., 77, 563-626 (1963).
[5] -: On compact analytic surfaces. III. Ann. of Math., 78, 1-40 (1963).
[6] -: On the structure of compact complex analytic surfaces. I. Amer. J. Math., 86, 751-798 (1964).
[7] -: On the structure of compact complex analytic surfaces. IV. Amer. J. Math., 90, 1048-1066 (1968).
[8] P. Orlik and P. Wagreich: Isolated singularities of algebraic surfaces with C^{*} action. Ann. of Math., 93, 205-228 (1971).
[9] M. Raynaud: Géométrie algébrique et géométrie analytique. Séminaire de géométrie algébrique 1, Exposé XII (1960-1961). IHES, Lecture Notes in Math., 224. Springer (1971).
[10] H. Rossi: Attaching Analytic Spaces to an Analytic Space Along a Pseudoconcave Boundary. Proc. Conf. Complex Analysis (Minneapolis 1964), 242-256. Springer (1965).

