No. 8]

126. Complex Structures on $S^1 \times S^5$

By Masahide Kato

(Comm. by Kunihiko KODAIRA, M. J. A., Oct. 12, 1973)

1. Let X be a compact complex manifold of dimension 3 of which the 1st Betti number is equal to 1 and the 2nd Betti number vanishes. X has at most two algebraically independent meromorphic functions. In this note we restrict ourselves to the case where there are exactly two algebraically independent meromorphic functions. Then X has an algebraic net of elliptic curves. Furthermore we assume that this net has no base points, in other words, there exists a surjective holomorphic mapping f onto a projective algebraic (non-singular) surface V whose general fibre is an (connected, non-singular) elliptic curve. Finally we assume that f is equi-dimensional (see Remark 1). This note is a preliminary report on some results on complex structures of X. Details will be published elsewhere.

2. Proposition 1. Every fibre of f is a non-singular elliptic curve.

Proposition 2. V is either a projective plane or a surface of general type.

Theorem 1. There exists an unramified covering manifold W of X such that $W \cup \{\text{one point}\}\$ is holomorphically isomorphic to a 3-dimensional affine variety with an algebraic C^* action.

Denote by α the linear transformation of N-dimensional complex affine space C^N defined by

 $\alpha: (z_1, \cdots, z_N) \mapsto (\alpha_1 z_1, \cdots, \alpha_N z_N),$

where $\alpha_1^{a_1} = \cdots = \alpha_N^{a_N} = \beta$ for suitable positive integers a_j $(j=1, \dots, N)$ and $0 < |\beta| < 1$. Then the infinite cyclic group $\langle \alpha \rangle$ generated by α acts on $\mathbb{C}^N - \{0\}$ freely and the quotient space $\mathbb{C}^N - \{0\}/\langle \alpha \rangle$ is a compact complex manifold.

Using some results of C. Chevally and M. Rosenlicht (see [8]), we obtain

Corollary. There exists a finite unramified covering manifold of X which is holomorphically isomorphic to a submanifold of $C^{N} - \{0\}/\langle \alpha \rangle$ for some N and α .

Let X_t be a small deformation of X. Then we have a small deformation W_t of W corresponding to X_t . By a theorem of H. Rossi [10], we obtain

Theorem 2. $W_t \cup \{\text{one point}\}\$ has a complex structure and be-

comes a Stein space.

3. If X is topologically homeomorphic to $S^1 \times S^5$, then we have, as corollaries to Theorem 1 and 2, the following two theorems.

Theorem 3. $\tilde{X} \cup \{\text{one point}\}\$ is holomorphically isomorphic to a 3-dimensional affine variety with an algebraic C^* action where \tilde{X} denotes the universal covering manifold of X.

Theorem 4. $\tilde{X}_t \cup \{\text{one point}\}\$ has a complex structure and becomes a Stein space where \tilde{X}_t denotes the universal covering manifold of X_t .

4. In proving Proposition 1 and the key fact that dim $H^1(X, \mathcal{O}_X)$ =1, the following lemma due to K. Akao plays a principal role.

Lemma. Assume that a 3-dimensional compact complex manifold X is a fibre space over a non-singular projective algebraic surface V with projection f satisfying following two conditions,

(1) there exists a finite set of points {v_j; j=1, ..., ρ} on V such that f⁻¹(v) is an (non-singular) elliptic curve for each point v ∈ V-{v_j},
(2) dim H¹(X, O_X)>dim H¹(V, O_V).

Then there exists a following exact sequence of sheaves

 $0 \to \mathcal{O}_V \to R^1 f_* \mathcal{O}_X \to \mathcal{S} \to 0,$

where the support of S is a finite set of points.

Remark 1. K. Akao proved that $f: X \rightarrow V$ is always equi-dimensional with the aid of the spectral sequence

 $E_2^{p,q} = H^p(V, R^q f_*C) \Rightarrow H^{p+q}(X, C).$

Remark 2. Let S be an elliptic surface of which the 1st Betti number is odd (i.e., a VI₀- class surface or a VII₀- class elliptic surface (K. Kodaira [7])). Then every fibre of S is a non-singular elliptic curve. By similar methods of proofs, we can show that the statements corresponding to Theorem 1 and Corollary are valid.

Example (Brieskorn and Van de Ven [1]). Let $a = (a_0, a_1, a_2, a_3)$ be a 4 tuple of positive integers and (z_0, z_1, z_2, z_3) the standard coordinate in C^4 . We define an affine variety $X(a) = X(a_0, a_1, a_2, a_3)$ by the equation $z_0^{a_0} + z_1^{a_1} + z_2^{a_2} + z_3^{a_3} = 0$.

Let S^7 be the sphere $\sum_{i=0}^{3} |z_i|^2 = 1$. Then the space

$$\sum (a) = X(a) \cap S^7$$

is a 5-dimensional oriented differentiable manifold in a natural way. Let $\langle \alpha \rangle$ be the infinite cyclic group acting on $X(a) - \{0\}$ freely generated by the transformation

 $\alpha: (z_0, z_1, z_2, z_3) \mapsto (\alpha^{a_0^{-1}} z_0, \alpha^{a_1^{-1}} z_1, \alpha^{a_2^{-1}} z_2, \alpha^{a_3^{-1}} z_3),$

where $\alpha \in C^*$ and $|\alpha| \neq 1$. Then $H(a) = X(a) - \{0\}/\langle \alpha \rangle$ is a compact complex manifold of dimension 3. By Proposition 4 in [1], if a_i and a_j are mutually prime for any $i \neq j$, then H(a) is an elliptic fibre space over a projective plane whose topological model is $S^1 \times S^5$. Every fibre of H(a) is an (connected, non-singular) elliptic curve.

576

References

- E. Brieskorn and A. Van de Ven: Some complex structures on products of homotopy spheres. Topology, 7, 389-393 (1967).
- [2] H. Grauert: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann., 146, 331-368 (1962).
- [3] H. Grauert und R. Remmert: Komplexe Räume. Math. Ann., **136**, 245–318 (1958).
- [4] K. Kodaira: On compact analytic surfaces. II. Ann. of Math., 77, 563-626 (1963).
- [5] ----: On compact analytic surfaces. III. Ann. of Math., 78, 1-40 (1963).
- [6] ----: On the structure of compact complex analytic surfaces. I. Amer. J. Math., 86, 751-798 (1964).
- [7] —: On the structure of compact complex analytic surfaces. IV. Amer.
 J. Math., 90, 1048-1066 (1968).
- [8] P. Orlik and P. Wagreich: Isolated singularities of algebraic surfaces with C* action. Ann. of Math., 93, 205-228 (1971).
- [9] M. Raynaud: Géométrie algébrique et géométrie analytique. Séminaire de géométrie algébrique 1, Exposé XII (1960-1961). IHES, Lecture Notes in Math., 224. Springer (1971).
- [10] H. Rossi: Attaching Analytic Spaces to an Analytic Space Along a Pseudoconcave Boundary. Proc. Conf. Complex Analysis (Minneapolis 1964), 242-256. Springer (1965).