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Approximate Solutions for Some Non.linear
Volterra Integral Equations

By Shin-ichi NAKAGIRI and Haruo MURAKAMI
Department of Applied Mathematics, Ko.be University

(Comm. by Kinjir6 KUNUGI, M. 1. A., March 12, 1974)

In this short note we give generalized e-approximate solutions
x(t , ,) of the following non-linear integral equations of Volterra-type

(P) x(t) f(t) + s, x(s))ds.

Under very general assumptions on f(t) and g(t, s, x) similar to the
Carathodory-type, R. K. Miller and G. R. Sell [1] proved the local ex-
istence theorem by applying the fixed point theorem of Schauder-
Tychonoff We shall prove that their assumptions in [1] assure the
existence of generalized -approximate solutions x(t;,D of (P) and
give some interesting properties of x(t;, ) which will play an essen-
tial role in our sequel paper [3]. As an easy application of our results,
we can show another existence proof of a solution of (P).

Let ix} denote the Euclidean norm of a vector x of R. For each
interval I containing O and each subset K of R, we define a space
C(I; tc) by the set of all continuous functions with domain I and range
in K with the compact-open topology. Then C[O,]-C([O, cr];R) is
the Banach space of continuous functions on [0, a] with the norm of
uniform convergence. We note that the space C[0, )-C([0, );R) is
not a Banach space but a Frchet space. Denote by _1[0, a] the
Banach space consisting of all Lebesgue measurable functions x’[0,

---+R with finite norm .[1 x(t) dt C.

We assume the ollowing hypotheses which are somewhat weaker
than those in [1].

(H1) The 2unction f is defined and continuous 2or all t in R/

{t e R" t >= 0} with values in R.
(H2) Let g(t, s, x) be a function defined on R/ R/ R with val-

ues in R such that
(i) or each fixed (t, x) e R/ R, g(t, s, x) is Lebesgue measurable

in s and g(t, s, x)-O for s t, and
(ii) or each fixed (t, s) e R/ R/ such that s<= t, g(t, s, x) is con-

tinuous in x.
(H3) For each real number l 0 and each compact subset K o R,

there exists a function re(t, .) e _[0, t] for each t e [0, l] such that
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Ig(t,s,x)l<__m(t,s) (O<=s<__t<=l, xeK)
and

sup {]*0m(t, s)ds" O<=t<= l} < c.

(H4) For each compact subinterval J of R/, each compact set K
in Rn and each to in R/,

sup {j,g(t,s,(s))--g(t0, s,(s)), ds" Ce C(J; K)}
tends to zero as tto.

(H5) Given any constant l0 and any compact set KR, we
have

lim g(t + h, s, (s)) ds 0
h-,0

uniformly in (t, ) or O<=t<=l and e C([0, l+ 1] K).
We define approximate solutions, sometimes called Carathodory

iterates, which will be used in the proof of the main theorem in our
later paper [3]. A function x(t;,e)is said to be an -Carathodory
iterate at a point e [0, ] or a continuous solution x(t) o (P) on [0, ],
or simply a Carathodory iterate, if

f(0) on [--e, 0]
x(t) on [0, ]

1 ) x(t, , )--f(t) + g(t, s, x(s))ds + g(t, s, x(s--s , s))ds

on [, ].
We shall give some explanation of this definition in the ollowing Prop-
osition 1.

Proposition 1. Let the functions f and g satisfy (H1)-(H4), then
a Carathodory iterate x(t; , D is defined and continuous on [0, a] for
each e [0, a] and O.

Proof. The last term of the ormula (1) defines a continuous unc-
tion x(t; , ) or [,+ e]. For if we take a compact set K0-- [J {x(t)"
0__<t__<:} and /=+e in (H3), then we see that x(t; ,) is defined and
bounded on [$, $+ e] by (H2) and (H3), and that x(t;$, ) is continuous
on [0, + e] by (H1), (H2) and (H4), because i x(t) is continuous on [0, ]
and t, t + h e [, + ] the inequality

[x(t + h , )-- x(t $, D[

<[f(t + h)-- f(t)[+.[i[ g(t + h, s, x(s))--g(t, s, x(s)) ds

holds. Here we note that K-- U{z(t; ,s)" --s<_t<+s} is compact.
It then follows that (1) can be used to extend z(t;, s) as a continuous
function over I--s, ’ + 2s]. Continuing in this tashion (1) serves to de-
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fine x(t , D over [0, ].
For each positive integer n, define x(t) by x(t)--x(t; 0, l/n).

Here, we can give another proof of the existence theorem in [1] by
using Carathodory iterates

Theorem 1. Under the hypotheses (H1)-(H4), here exists an
interval [0, ], fl 0, on which there is a continuous solution x() of (P).

We shall only give a brief sketch of the proof. We can find an
interval [0, ] and a compact set KR such that

K-- {K($) t e [0, ]} (the closure in R).
K(t) {p e R P--f(t) <} and

{tolg(t, s, (s))I ds" 0_<t_<fl, e C([0, fl]; K)}.8-sup

Then each approximate solution x(t) is defined and continuous on [0, ].
Moreover x(.) e D[0, fl], where the set D[0, ] is defined by

D[0, fl] {x(.) e C[0, fl]: x(t) e K(t) for every t e [0, ]}.
Hence we see from (H3) and (H4) that the sequence (x} is equi-contin-
uous and uniformly bounded on [0, fl], and so {x} has a subsequence
with a limit, x say. Then x(t) is a solution of (P) on [0, ].

For any T0 we put F*(T)= t2 {F(t) O<_t<_T}, where F(t) is the
cross-section F(t)={p:p=x(t), where x is some solution of (P)}. Let
a be the positive number an=sup {0: F*() is compact}. By (H5)
we see that [0, a) becomes a right maximal interval (for details, see
[2]).

Proposition 2. Let the Hypotheses (H1)-(H4) be satisfied, and
let c be a fixed number in [0, a). Then for any ro>O, there exists an

o0 such that an -Carathodory iterate x(t , ) at e [0, c] for a fixed
solution x(t) of (P) on [0, c] belongs to V(F*(c), to) for all e e (0, 0] and
every t, e [0, c], where V(F*(c), to) is an ro-neighbourhood of F*(c).

Proof. To prove this proposition assume the contrary. Then
without loss of generality we can assume that there exists a sequence
of Carathodory iterates {x(. ;$, n)} such that

( I ) lim =0 (monotonely decreasing) and lim =$0

( II ) x(t ,) e V(F*(c), to) for t e [0, t) and
x(t , n) e 3V(F*(c), to) (the boundary of V(F*(c), to))

(III) lim x(t , n)=X0 e 3V(F*(c), to) and lim t=to.
We can verify that O$oto<=C. Moreover in (I) and in (III), we can
assume that the sequences {.} and {t.} converge monotonely (monotone-
ly decreasing or monotonely increasing). Hence we can consider four
cases.
Case (A): lira $--0, lira t--t0 (monotonely increasing). In this

case we define a family of continuous functions {(. ;$, )} on [0, t0]
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as follows"

x(t ,) on [0, t]
(t n, Sn)--

[X(tn n, en) on [tn, to].
Then by (II) (t; n, en) belongs to the closure V(F*(c),ro) for every
t e [0, to], . and >0, and therefore the family {z(. ,n)} is uni-
formly bounded.

Let t e [0, n], then
2(t+ h n, 6n)-- (t n, $n) I--I X(t + h)--

< sup {I x(t + h)I-- x(t)[" t e [0, to]}
Io(h), i t + h e [0, ].

Let t e [n, t], then

I(t + h n, 6n)-- (t n, 6n)I<lf(t+ h)--f(t)l

+ g(t + h, s, x(s)) g(t, s, x(s))l ds

+ g(t + h, s, x(s-- en n, $n)) g(t, s, x(s--n , n)) ds

< sup {I f(t + h)--f(t)]" t e J}

+2sup f g(t + h, s, (s))--g(t, s, (s)) ds e L’(J; K)-
J

Ii(h) / 212(t, h),
if t/he[,tn] where J--[0, t0] and K--V(F*(c),r0). And let
t e [tn, to], then

I,(t -3
t- h n, Sn)-- (t n, Sn)I---O, if t + h e [tn, to].

We shall now show that {z(. =,)} is equi-continuous at each
point t e [0, to]. Let t be fixed. Then we can verify the following in-
equalities as above"

[Io(h) for
$(t -t- h , Sn)- (t $n, n) < I(h) + 212(t, h) or t / h e [n, t]

[I(t-- t) + 212(tn, in-- t) for t + h e [in, to]
for all n satisfying t e [0, ],

I(h) + 212(t, h) for t + h e [0, t=]
I(t+ h n, )-- (t , )I<= [I(tn-- t) + 2I(tn, t-- t) for t + h e [tn, to]
for all n satisfying t e [, in], and

[(t+h; n )--(t; n n)] <I(tn-t)+212(t’tn-t)- for t+he [0, tn]
[0 for t + h e [t, to]

for all n satisfying t e [t, to]. Since f and x are continuous on the
compact interval [0, to], lim I0(h)-lim I(h)--O. Hence lim I(t t)= O,

h0 h0 h--*0

because 0< t= t< h. Hypothesis (H4) with J= [0, to] and K-- V(F*(c), to)
implies lim I(t, h)--O. Moreover, it follows from Hypothesis (H4) that

lim I(t, h)-O uniformly in t e J by the standard argument on uniform
h-0

continuity on compact sets. Thus we have limI(t=,tn--t)--O. This
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shows the equi-continuity of {(. ;n,$n)} at a point t e J. Hence
{(. , e)} is relatively compact in C(J K) by Ascoli-Arzel’s Theorem.
Thus we can find a subsequence {(. ;,)}{(. ;, )} and Xo(t)
e C(J; K) such that lim (t $, )--Xo(t) uniforly in t e J. For nota-

tional convenience we shall write n for n. If we can show that
Xo(t) is a solution of (P) on J= [0, t0] 1

and
lim (to, , Sn)--Xo e 3V(F*(c), ro) ( 2

then we will have shown that X(to)=Xo. This result would contradict
Xo e 3V(F*(c), to) and the proof of our Proposition 2 in Case (A) would
be complete. (2) is trivial by the definition of (t; , n). We shall now
show that Xo(t) is a solution of (P). By our construction, the relation

(t n, en) f(t) + 8, 2(S , e))ds

holds on [0, t] and

(t , s)-f(t) + (t, ,( ,
on Its, to], where

[(t; , t e 0,(t; ,)=
e(t-s , s) t e [, t,].

or any fixed t [0, to), the condition lim t=t (monoonely increasing)

implies tha there exists N>O such that

Iog(t,(t ,)=f(t) + s, (s , ))ds

or any nN. Here we note that
[g(t,s,(s; ,e))]m(t,s) (Osgtgto, n=l, 2,...),

where re(t,.) is the measurable unction in 1[0, t] stated in (H3) cor-
responding to l=to and K--V(F*(c),ro). By the equi-continuity o
((. ,)), we can verify that lim ($--en,n, en):Xo($) or every

t e [0, t0). Therefore by the Lebesgue dominated convergence theorem
we have

Xo(t)= f(t)+ f2g(t, s, Xo(S))ds.

We can show that this equality holds also at t-t0, because by the con-
tinuity of Xo(t) and (H4) we have

Xo(to) lira Xo(t)
tto

tto tto

=Z(t,)+ ,())g.

Hence z(t) is a solution of (P) on [0, t]. hus (1) is verified.
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Case (B): lim =0 (monotonely increasing) and lim t to (mono-
tonely decreasing). We define in this case (t; $,e) on [0, t0] by
(t , n)= x(t n, ). Then we can suppose that {(. , )} is an

equi-continuous amily on [0, to] with a uniform limit Xo(t). Then we can
prove as before that Xo(t) satisfies (1). Moreover the equi-continuity
of {x(. , )} and (III) imply that (2) is also true in this case. Hence,
Case (B) can be proved by contradiction as before.

Other cases can be demonstrated in similar ashion.
Remark. In the Proposion 2 above, s0 depends on r0 and x(.).

This result can be improved to that 0 depends on r0 only, if we use
instead o x(. ,) new Carathodory iterates x(. , s) construct-
ed rom a sequence o solutions {x(.)} with a uniform limit x(.).

About the continuity in o x(t; , D, we have the following theo-
rem.

Theorem 2. Let f and g satisfy the conditions of Proposition 2.
Then for any solution x of (P) and every 0, Carathodory iterates
x(. , e) belong to C[0, an) and x(. , ) is continuous in e [0, an) with
the compact-open topology of C[0, a).

The proof o this theorem will be ound in our forecoming note [3].
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