71. A Note on Nonlinear Differential Equation in a Banach Space

By Shigeo KATO

Kitami Institute of Technology, Kitami, Hokkaido (Comm. by Kinjirô KUNUGI, M. J. A., April 18, 1974)

1. Let *E* be a Banach space with the dual space E^* . The norms in *E* and E^* are denoted by || ||. We denote by S(u, r) the closed sphere of center *u* with radius *r*.

It is our object in this note to give a sufficient condition for the existence of the unique solution to the Cauchy problem of the form (1.1) $u'(t) = f(t, u(t)), \quad u(0) = u_0 \in E,$ where f is a E valued mapping defined on $[0, T] \times S(u, r)$

where f is a E-valued mapping defined on $[0, T] \times S(u_0, r)$.

We compare the differential equation (1.1) with the scalar equation (1.2) w'(t) = g(t, w(t)),

where g(t, w) is a function defined on $(0, a] \times [0, b]$ which is measurable in t for fixed w, and continuous monotone nondecreasing in w for fixed t. We say w is a solution of (1.2) on an interval I contained in [0, a]if w is absolutely continuous on I and if w'(t) = g(t, w(t)) for a.e. $t \in I^{\circ}$, where I° is the set of all interior points of I.

We assume that g satisfies the following conditions:

There exists a function m defined on (0, a) such that g(t, w)(i) $\leq m(t)$ for $(t, w) \in (0, a) \times [0, b]$ and for which m is Lebesgue integrable on (ε, a) for every $\varepsilon > 0$.

For each $t_0 \in (0, a]$, $w \equiv 0$ is the only solution of the equation

(ii) (1.2) on $[0, t_0]$ satisfying the conditions that $w(0) = (D^+w)(0) = 0$, where D^+w denotes the right-sided derivative of w.

2. Let g be as in Section 1. Then we have the following lemmas.

Lemma 2.1. Let $\{w_n\}$ be a sequence of functions from [0, a] to [0, b] converging pointwise on [0, a] to a function w_0 . Let M > 0 such that $|w_n(t) - w_n(s)| \leq M |t-s|$ for $s, t \in [0, a]$ and $n \geq 1$. Suppose further that for each $n \geq 1$

 $w'_n(t) \leq g(t, w_n(t)) \qquad for \ t \in (0, a)$

such that $w'_n(t)$ exists. Then w_0 is a solution of (1.2) on [0, a]. For a proof see [4].

Lemma 2.2. Let M > 0 and let $\{w_n\}$ be a sequence of functions from [0, a] to [0, b] with the property that $|w_n(t) - w_n(s)| \leq M |t-s|$ for all $s, t \in [0, a]$ and $n \geq I$. Let $w = \sup_{n \geq 1} w_n$, and suppose that $w'_n(t)$ $\leq g(t, w_n(t))$ for $t \in (0, a)$ such that $w'_n(t)$ exists. Then w is a solution of (1.2) on [0, a]. For a proof see [2].

Lemma 2.3. Let w be an absolutely continuous function from [0, a] to [0, b] such that $w(0) = (D^+w)(0) = 0$ and $w'(t) \le g(t, w(t))$ for $t \in (0, a)$ such that w'(t) exists. Then $w \equiv 0$ on [0, a].

The proof of this lemma is quite similar to that of Theorem 2.2 in [1] and is omitted.

3. For each u in E let F(u) denote the set of all x^* in E^* such that $(u, x^*) = ||u||^2 = ||x^*||^2$, where (u, x^*) denotes the value of x^* at u.

Theorem. Let f be a strongly continuous mapping of [0, T] $\times S(u_0, r)$ into E such that

(3.1) $2 \operatorname{Re} (f(t, u) - f(t, v), x^*) \leq g(t, ||u - v||^2)$

for (t, u), $(t, v) \in (0, T] \times S(u_0, r)$ and for some $x^* \in F(u-v)$, where g satisfies the conditions in Section 1 with a = T and $b = Max \{4r^2, 8rMT\}$. Then (1.1) has a unique strongly continuously differentiable solution u defined on some interval $[0, T_0]$.

Proof. Since f is strongly continuous on $[0, T] \times S(u_0, r)$ there exist constants $0 < r_0 \le r$, $0 < T_1 \le T$ and M > 0 such that $||f(t, u)|| \le M$ for $(t, u) \in [0, T_1] \times S(u_0, r_0)$. Let $T_0 = \text{Min} \{r_0/M, T_1\}$ and let n be a positive integer. We set $t_0^n = 0$, and $u_n(t_0^n) = u_0$. Inductively, for each positive integer i, define $\delta_i^n, t_i^n, u_n(t_i^n)$ as follows:

 $(3.2) \qquad \qquad \delta_i^n \ge 0, \qquad t_{i-1}^n + \delta_i^n \le T_0.$

 \mathbf{If}

(3.3)
$$||v-u_n(t_{i-1}^n)|| \leq M\delta_i^n \text{ and } |t-t_{i-1}^n| \leq \delta_i^n,$$

then $||f(t, v) - f(t_{i-1}^n, u_n(t_{i-1}^n)|| \leq 1/n.$

$$\|u_n(t_{i-1}^n) - u_0\| \leq r_0$$

and δ_i^n is the largest number such that (3.2) to (3.4) hold. Define $t_i^n = t_{i-1}^n + \delta_i^n$ and define for each $t \in [t_{i-1}^n, t_i^n]$

(3.5)
$$u_n(t) = u_n(t_{i-1}^n) + \int_{t_{i-1}^n}^t f(s, u_n(t_{i-1}^n)) ds.$$

Then we have

(3.6) $||u_n(t)-u_n(s)|| \le M |t-s|, ||u_n(t)-u_0|| \le r_0$ for $s, t \in [0, T_0]$, and $t_N^n = T_0$ for some positive integer N = N(n). For some detail see [6] and [3].

Let $w_{mn}(t) = ||u_m(t) - u_n(t)||^2$ for $m > n \ge 1$ and $t \in [0, T_0]$. Obviously $w_{mn}(0) = 0$, and $|w_{mn}(t) - w_{mn}(s)| \le 8r_0 M |t-s|$ for $s, t \in [0, T_0]$. For each $t \in (0, T_0)$ there exist positive integers i and j such that $t \in (t_{j-1}^m, t_j^m)$ and $t \in (t_{i-1}^n, t_i^n)$. By Lemma 1.3 in [5] and (3.5) we have

(3.7)
$$w'_{mn}(t) = 2 \operatorname{Re} \left(u'_{m}(t) - u'_{n}(t), x^{*}_{mn}(t) \right) \\ = 2 \operatorname{Re} \left(f(t, u_{m}(t^{m}_{j-1})) - f(t, u_{n}(t^{n}_{i-1})), x^{*}_{mn}(t) \right) \\ \leq g(t, w_{mn}(t)) + 2(1/m + 1/n) \| u_{m}(t) - u_{n}(t) \| \\ \leq g(t, w_{mn}(t)) + 8r_{0}/n$$

for a.e. $t \in (0, T_0)$ and for some $x_{mn}^*(t) \in F(u_n(t) - u_n(t))$. Let $w_n(t) = \sup_{m > n} w_{mn}(t)$ for $t \in [0, T_0]$. Then obviously $w_n(0) = 0$ for $n \ge 1$. By Lemma 2.2 and (3.7) we have (3.8) $|w_n(t) - w_n(s)| \le 8r_0 M |t-s|$ for $s, t \in [0, T_0]$, and (3.9) $w'_n(t) = g(t, w_n(t)) + 8r_0/n$ for a.e. $t \in (0, T_0)$. On the other hand, $0 \le w_n(t) \le w_n(0) + 8r_0 M t \le 8r_0 M T_0$ for $n \ge 1$ and $t \in [0, T_0]$. Thus the sequence $\{w_n\}$ is equicontinuous and uniformly

bounded, and hence it has a subsequence $\{w_{nj}\}$ is equicontinuous and uniformly on $[0, T_0]$ to a function w, and obviously w(0)=0. It follows from (3.9) and Lemma 2.1 that w'(t)=g(t, w(t)) for a.e. $t \in (0, T_0)$.

We shall next show that $(D^+w)(0)=0$. Since f is continuous at $(0, u_0)$, given $\varepsilon > 0$ we can find $\delta > 0$ such that $||f(t, u) - f(0, u_0)|| < \varepsilon$ whenever $0 \le t \le \delta$ and $||u-u_0|| \le \delta$. Let $\delta_0 = \text{Min} \{\delta, \delta/M\}$. Then, by (3.6), $||u_n(t) - u_0|| \le \delta_0$ for all n and $t \in [0, \delta_0]$, and therefore $||f(t, u_m(t)) - f(t, u_n(t))|| < 2\varepsilon$ whenever $m > n \ge 1$ and $t \in [0, \delta_0]$. By (3.3) and (3.7) we have

for a.e.
$$t \in (0, \delta_0)$$
:

and hence, by integrating the above inequality, we have

$$0 \leq w_{mn}(t) \leq 8r_0(\varepsilon + 1/n)t,$$

whence $(D^+w)(0)=0$. From Lemma 2.3, we deduce now that $w\equiv 0$, and this implies that the sequence $\{u_n\}$ is uniformly convergent on $[0, T_0]$. The limit of this sequence satisfies

$$u(t) = u_0 + \int_0^t f(s, u(s)) ds$$
 for $t \in [0, T_0]$

(see [3]). Consequently u is a strongly continuously differentiable solution of (1.1) on $[0, T_0]$.

Let v be another strongly continuously differentiable solution of (1.1) on $[0, T_0]$. Let $z(t) = ||u(t) - v(t)||^2$. Then obviously z(0) = 0, and $z'(t) = 2 \operatorname{Re} (f(t, u(t)) - f(t, v(t)), x^*(t)) \leq g(t, z(t))$

for a.e. $t \in (0, T_0)$ and for some $x^*(t) \in F(u(t) - v(t))$. The fact $(D^+z)(0) = 0$ follows from $0 \le z(t)/t = t ||(u(t) - v(t))/t||^2 \to 0$ as $t \downarrow 0$. Therefore by Lemma 2.3 $z \equiv 0$, and the proof is complete.

References

- E. Coddington and N. Levinson: Theory of Ordinary Differential Equations. New York (1955).
- [2] T. M. Flett: Some applications of Zygmunds lemma to nonlinear differential equations in Banach and Hilbert spaces. Studia Math. Tom XLIV (1972).
- [3] S. Kato: On nonlinear differential equations in Banach spaces (to appear).
- [4] —: Some remarks on nonlinear differential equations in a Banach space (to appear).

- [5] T. Kato: Nonlinear semi-groups and evolution equations. J. Math. Soc. Japan., 19, 508-520 (1967).
- [6] G. Webb: Continuous nonlinear perturbations of linear accretive operators in Banach spaces. J. Func. Anal., 10, 191-203 (1972).