134. On Submodules over an Asano Order of a Ring^{*}

By Kentaro MURATA

(Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1974)

1. Let R be a ring with unity quantity, and let o be a regular maximal order of R. The term *ideal* means a non-zero fractional twosided o-ideal in R. We shall use small German letters a, b, c with or without suffices to denote ideals in R. The inverse of an ideal α will be denoted by a^{-1} , and a^* will denote a^{-1-1} . Two ideals a and b are said to be quasi-equal if $a^{-1} = b^{-1}$; in symbol: $a \sim b$. The term submodule means a two-sided o-submodule which contains at least one regular element of R. A submodule M is said to be *closed* if whenever $\mathfrak{a} \subseteq M$ implies $\alpha^* \subseteq M$. It is then clear that every submodule is closed when the arithmetic holds for o (cf. [1, § 2]). For any two closed submodules M_1 and M_2 we define a product $M_1 \circ M_2$ to be the set-theoretical union of all ideals $(\sum_{i=1}^{n} a_i b_i)^*$ where $a_i \subseteq M_1$ and $b_i \subseteq M_2$ $(i=1, \dots, n)$. Now the set G of all ideals a such that $a = a^*$ forms a *commutative* group under the multiplication " \circ " defined by $a \circ b = (ab)^* = (a^*b^*)^*$; because G is a (conditionally) complete *l*-group under the above multiplication and the inclusion (cf. p. 91 in [5]). Hence $M_1 \circ M_2 = M_2 \circ M_1$, and if the ascending chain condition in the sense of quasi-equality holds for integral ideals, the set \mathfrak{M} of all closed submodules forms a commutative *l*-semigroup under the above multiplication and the set-inclusion (cf. Lemmas 5.1 and 5.2 in [2]).

Let \mathfrak{P} be the set of all prime ideals which are not quasi-equal to \mathfrak{o} , let $|\mathfrak{P}|$ be the cardinal number of \mathfrak{P} , and let $\mathbb{Z}_{-\infty}$ be the set-theoretical union of the rational integers \mathbb{Z} and $-\infty$. Then the complete direct sum $\bigoplus_{\mathfrak{P}} \mathbb{Z}_{-\infty}$ ($|\mathfrak{P}|$ -copies) of $\mathbb{Z}_{-\infty}$ is an *l*-semigroup under the addition $[m_{\mathfrak{p}}] + [n_{\mathfrak{p}}] = [m_{\mathfrak{p}} + n_{\mathfrak{p}}]$ and the partial order $[m_{\mathfrak{p}}] > [n_{\mathfrak{p}}] \Leftrightarrow m_{\mathfrak{p}} \le n_{\mathfrak{p}}$ for all $\mathfrak{p} \in \mathfrak{P}$, where $m_{\mathfrak{p}}, n_{\mathfrak{p}} \in \mathbb{Z}_{-\infty}$. Let $\bigoplus_{\mathfrak{P}}^* \mathbb{Z}_{-\infty}$ be the set of all vectors $[m_{\mathfrak{p}}]$ such that $m_{\mathfrak{p}} \le 0$ for almost all $\mathfrak{p} \in \mathfrak{P}$. Then it forms an *l*-subsemigroup of $\bigoplus_{\mathfrak{P}} \mathbb{Z}_{-\infty}$.

The aim of the present note is to prove the following

Theorem. If the ascending chain condition in the sense of quasiequality (cf. p. 109 in [1]) holds for integral ideals, the l-semigroup \mathfrak{M} of all non-zero closed submodules is isomorphic to $\bigoplus_{\#}^{*} \mathbb{Z}_{-\infty}$ as an l-semigroup. If in particular the arithmetic holds for $\mathfrak{0}$, the l-semigroup \mathfrak{M} of all submodules (containing regular elements) is isomorphic to $\bigoplus_{\#}^{*} \mathbb{Z}_{-}$ as an l-semigroup, and every submodule $M \in \mathfrak{M}$ is written as follows:

^{*)} Dedicated to professor Kiiti Morita on his 60th birthday.

Submodules over Asano Order of Ring

$$M = \prod_{\mathfrak{p} \in P_+} \mathfrak{p}^{\mathfrak{p}(\mathfrak{p})} \left(\sum_{\mathfrak{p} \in P_-} \mathfrak{p}^{\mathfrak{p}(\mathfrak{p})} \right) \mathfrak{o}_P \tag{(*)}$$

where $\nu(\mathfrak{p}) = \nu_M(\mathfrak{p})$ is the \mathfrak{p} -coordinate of the vector in $\bigoplus_{\mathfrak{p}}^* \mathbf{Z}_{-\infty}$ which corresponds to M by the above isomorphism, $P_+ = P_+(M)$ is the prime ideals with $\nu_M(\mathfrak{p}) > 0$, $P_- = P_-(M)$ is the prime ideals with $-\infty < \nu_M(\mathfrak{p})$ < 0, \mathfrak{o}_P is the P-component of \mathfrak{o} (cf. [1, §3]) for the set $P = P_0(M)$ $\cup P_+(M) \cup P_-(M)$ the prime ideals with $\nu_M(\mathfrak{p}) = 0$, and Σ denotes the restricted direct sum.

 $P_+(M)$ is a finite set for each submodule M, but both $P_-(M)$ and $P_0(M)$ are not necessarily finite.

The first half of Theorem is a generalization of [3, Theorem 1] in the case of Dedekind domains (cf. $[4, \S 2]$) to a non-commutative case.

2. Proof of Theorem. Let α be an ideal, and let $\alpha \sim \alpha^* = IIp^{\alpha}$, $\alpha \in \mathbb{Z}$, be the factorization of α^* into prime ideals p's with $p \not\sim 0$, where $II_i \alpha_i$ means $(II_i \alpha_i)^*$ (cf. p. 13 in [2]). In the following we use $\nu(p; \alpha)$ to denote α , the p-exponent of α^* . Then we have

- (1) $\nu(\mathfrak{p}; \mathfrak{a}) = 0$ for almost all $\mathfrak{p} \in \mathfrak{P}$.
- (2) $\nu(\mathfrak{p}; \mathfrak{a}) = \nu(\mathfrak{p}; \mathfrak{a}^*).$
- (3) $\nu(\mathfrak{p}; \mathfrak{a}+\mathfrak{b}) = \operatorname{Min} \{\nu(\mathfrak{p}; \mathfrak{a}), \nu(\mathfrak{p}; \mathfrak{b})\}.$
- (4) $\nu(\mathfrak{p};\mathfrak{ab}) = \nu(\mathfrak{p};\mathfrak{a}) + \nu(\mathfrak{p};\mathfrak{b}).$
- (5) $\mathfrak{a}\subseteq\mathfrak{b}$ implies $\nu(\mathfrak{p};\mathfrak{a})\geq\nu(\mathfrak{p};\mathfrak{b})$.
- (6) If $\nu(\mathfrak{p}; \mathfrak{a}) \ge \nu(\mathfrak{p}; \mathfrak{b})$ for all $\mathfrak{p} \in \mathfrak{P}$, then $\mathfrak{a} \subseteq \mathfrak{b}^*$.
- (7) If $\nu(\mathfrak{p}; \mathfrak{a}) = \nu(\mathfrak{p}; \mathfrak{b})$ for all $\mathfrak{p} \in \mathfrak{P}$, then $\mathfrak{a} \sim \mathfrak{b}$.

Ad (3): It follows from $(a+b)^* = (a^*+b^*)^*$. Ad (4): It follows from $(ab)^* = (a^*b^*)^*$ (cf. p. 13 in [2]). (5) is immediate from (3). The other properties are evident.

The initial stage in our proof will be a generalization of $\nu(\mathfrak{p}; \cdot)$ for submodules. For any $M \in \mathfrak{M}$ we define

$$\nu(\mathfrak{p}; M) = \inf \{ \nu(\mathfrak{p}; \mathfrak{a}) \mid \mathfrak{a} \subseteq M \}$$

Then, fixing M and running \mathfrak{p} through $\mathfrak{P}, \nu(\mathfrak{p}; M)$ is considered as a map from \mathfrak{P} into $\bigoplus_{\mathfrak{P}} \mathbb{Z}_{-\infty}$. In this state it is convenient to use $\nu_M(\mathfrak{p})$ or ν_M instead of $\nu(\mathfrak{p}; M)$. For any fixed ideal \mathfrak{a}_0 in M we have $\nu_M(\mathfrak{p}) \leq \nu(\mathfrak{p}; \mathfrak{a}_0)$. Hence $\nu_M(\mathfrak{p}) \leq 0$ for almost all $\mathfrak{p} \in \mathfrak{P}$.

Let σ be a map from \mathfrak{P} into $\bigoplus_{\mathfrak{P}} \mathbb{Z}_{-\infty}$ such that $\sigma(\mathfrak{p}) \leq 0$ for almost all $\mathfrak{p} \in \mathfrak{P}$, and let $M\langle \sigma \rangle$ be the set-theoretical union of all ideals \mathfrak{a} such that $\nu(\mathfrak{p}; \mathfrak{a}) \geq \sigma(\mathfrak{p})$ for all $\mathfrak{p} \in \mathfrak{P}$. Then $M\langle \sigma \rangle$ is a closed submodule in our sense. For, we let \mathfrak{b} be an ideal contained in $M\langle \sigma \rangle$. Then by the ascending chain condition in the sense of quasi-equality and by the regularity of \mathfrak{o} , we can choose a finite number of elements b_1, \dots, b_n in \mathfrak{b} such that at least one of the b_i is regular and $\mathfrak{b}^* = (b_1, \dots, b_n)^*$. Taking \mathfrak{a}_i such that $\mathfrak{a}_i \ni b_i$, $\mathfrak{a}_i \subseteq M\langle \sigma \rangle$, we have $\mathfrak{b}^* = (b_1, \dots, b_n)^*$ $\subseteq (\sum_{i=1}^n \mathfrak{a}_i^*)^* = (\sum_{i=1}^n \mathfrak{a}_i)^*$. Hence $\nu(\mathfrak{p}; \mathfrak{b}^*) \geq \nu(\mathfrak{p}; (\sum_{i=1}^n \mathfrak{a}_i)^*) = \nu(\mathfrak{p}; \sum_{i=1}^n \mathfrak{a}_i)$ $= \operatorname{Min} \{\nu(\mathfrak{p}; \mathfrak{a}_i)\} \geq \sigma(\mathfrak{p})$. Thus we get $\mathfrak{b}^* \subseteq M\langle \sigma \rangle$.

No. 8]

K. MURATA

We note here that for each ideal $\alpha \subseteq M \langle \nu_M \rangle$ there exists an ideal c such that $\nu(\mathfrak{p}; \mathfrak{c}) \leq \nu(\mathfrak{p}; \mathfrak{a}), \mathfrak{c} \subseteq M$. For, if there is no such ideal we have $\nu(\mathfrak{p}; \mathfrak{c}) > \nu(\mathfrak{p}; \mathfrak{a})$ for all (non-zero) ideal $\mathfrak{c} \subseteq M$. Since $\nu(\mathfrak{p}; \mathfrak{a}) \neq -\infty$, the set of all $\nu(\mathfrak{p}; \mathfrak{c}), \mathfrak{c} \subseteq M$, has a lower bound. Hence there exists an integer n_0 such that $\nu(\mathfrak{p}; M) = n_0 = \nu(\mathfrak{p}; \mathfrak{c}_0)$ for a suitable $\mathfrak{c}_0 \subseteq M$. By the assumption we have $n_0 = \nu(\mathfrak{p}; \mathfrak{c}_0) > \nu(\mathfrak{p}; \mathfrak{a})$. However $\mathfrak{a} \subseteq M \langle \nu_M \rangle$ implies $\nu(\mathfrak{p}; \mathfrak{a}) \geq \nu_M(\mathfrak{p}) = n_0$, which is a contradiction.

Now we prove $M\langle \nu_M \rangle = M$. $M \subseteq M \langle \nu_M \rangle$ is evident. Conversely, let α be an arbitrary (non-zero) ideal in $M \langle \nu_M \rangle$, and let $\mathfrak{p}_1, \dots, \mathfrak{p}_m$ be the all prime ideals \mathfrak{p} such that $\nu(\mathfrak{p}; \alpha) \neq 0$, $\mathfrak{p} \in \mathfrak{P}$. Then we can choose a suitable ideal c_1 such that $\nu(\mathfrak{p}_1; c_1^*) \leq \nu(\mathfrak{p}_1; \alpha)$, $c_1 \subseteq M$. Next we let $\mathfrak{p}_{m+1}, \dots, \mathfrak{p}_n$ be all prime ideals \mathfrak{p} , if there exists, such that $\nu(\mathfrak{p}; \mathfrak{c}_1) > 0$ and \mathfrak{p} does not appear among $\mathfrak{p}_1, \dots, \mathfrak{p}_m$. Then we can take suitable ideals c_i such that $\nu(\mathfrak{p}_i; \mathfrak{c}_i) \leq \nu(\mathfrak{p}_i; \alpha)$, $c_i \subseteq M$ ($i=2, \dots, n$). Then clearly $c=c_1+c_2+\dots+c_n\subseteq M$, and $c^*\subseteq M$. For any \mathfrak{p}_j ($j=1,\dots,n$), we have $\nu(\mathfrak{p}_j; \mathfrak{c}) \leq \nu(\mathfrak{p}_j; \mathfrak{c}_j) \leq \nu(\mathfrak{p}_j; \alpha)$, and for any $\mathfrak{p} \in \mathfrak{P}$ different from \mathfrak{p}_j ($j=1,\dots,n$), we have $\nu(\mathfrak{p}; \mathfrak{c}) \leq \nu(\mathfrak{p}; \mathfrak{c}_1) \leq 0 = \nu(\mathfrak{p}; \alpha)$. Thus we obtain $\alpha \subseteq \mathfrak{c}^*$, $\alpha \subseteq M$ as desired.

Next we prove $\nu_{M\langle\sigma\rangle} = \sigma$. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ be the set of all the prime ideals \mathfrak{p} such that $\sigma(\mathfrak{p}) \geq 0$, $\mathfrak{p} \in \mathfrak{P}$. We form $c = \mathfrak{p}_1^{\sigma(\mathfrak{p}_1)} \circ \cdots \circ \mathfrak{p}_n^{\sigma(\mathfrak{p}_n)}$. Then evidently $c^* = c$ and $\nu(\mathfrak{p}_i; c) = \sigma(\mathfrak{p}_i)$ for $i = 1, \dots, n$. If $\mathfrak{p} \neq \mathfrak{p}_i$ $(i = 1, \dots, n)$, $\mathfrak{p} \in \mathfrak{P}$, then $\nu(\mathfrak{p}; c) = 0 \geq \sigma(\mathfrak{p})$. Hence $c \subseteq M\langle\sigma\rangle$, and hence $\nu(\mathfrak{p}_i; M\langle\sigma\rangle)$ $\leq \nu(\mathfrak{p}_i; c) = \sigma(\mathfrak{p}_i)$ for $i = 1, \dots, n$. If $\mathfrak{p}' \neq \mathfrak{p}_i$ $(i = 1, \dots, n)$, $\mathfrak{p}' \in \mathfrak{P}$, then putting $\mathfrak{a} = (c\mathfrak{p}'^{\sigma(\mathfrak{p}')})^*$, we have $\nu(\mathfrak{p}_i; \mathfrak{a}) = \sigma(\mathfrak{p}_i)$ and $\nu(\mathfrak{p}'; \mathfrak{a}) = \sigma(\mathfrak{p}')$. For any \mathfrak{p}'' such that $\mathfrak{p}'' \neq \mathfrak{p}_i$ $(i = 1, \dots, n)$, $\mathfrak{p}'' \neq \mathfrak{p}', \mathfrak{p}'' \in \mathfrak{P}$, we have $\nu(\mathfrak{p}'; \mathfrak{a}) = 0 \geq \sigma(\mathfrak{p}'')$. Hence $\mathfrak{a} \subseteq M\langle\sigma\rangle$, and hence $\nu(\mathfrak{p}'; M\langle\sigma\rangle) \leq \nu(\mathfrak{p}'; \mathfrak{a}) = \sigma(\mathfrak{p})$ for an arbitrary $\mathfrak{p}' \neq \mathfrak{p}_i$ $(i = 1, \dots, n), \ \mathfrak{p}' \in \mathfrak{P}$. Above all we get $\nu(\mathfrak{p}; M\langle\sigma\rangle) \leq \sigma(\mathfrak{p})$ for all $\mathfrak{p} \in \mathfrak{P}$. Thus we have $\nu_{M\langle\sigma\rangle} \leq \sigma$. $\nu_{M\langle\sigma\rangle} \geq \sigma$ is evident by the definition of $\nu_{M\langle\sigma\rangle}$. Therefore we obtain $\nu_{M\langle\sigma\rangle} = \sigma$ as desired.

By the above argument we have

$$M \mapsto \nu_M \mapsto M \langle \nu_M \rangle = M, \qquad \sigma \mapsto M \langle \sigma \rangle \mapsto \nu_{M \langle \sigma \rangle} = \sigma.$$

Accordingly the map $M \mapsto \nu_M$ gives a bijection from \mathfrak{M} to the set of all σ . Now it is clear that the set of all vectors $[\sigma(\mathfrak{p})] = \{\sigma(\mathfrak{p}) \mid \mathfrak{p} \in \mathfrak{P}\}$ coincides with $\bigoplus_{\mathfrak{P}} \mathbb{Z}_{-\infty}$. We shall show the map f:

$$M \mapsto f(M) = [\nu_M(\mathfrak{p})]$$

gives an *l*-semigroup-isomorphism from \mathfrak{M} to $\bigoplus_{\mathfrak{P}}^* \mathbb{Z}_{-\infty}$. For, let M_1 , $M_2 \in \mathfrak{M}$, and take an arbitrary (non-zero) ideal c contained in $M_1 \circ M_2$. Then by using the ascending chain condition in the sense of quasiequality for integral ideals we can take an ideal $(\sum_{i=1}^n \alpha_i \mathfrak{b}_i)^*$ which contains c. In fact by the ascending chain condition in the sense of quasi-equality \mathfrak{c}^* is generated by a finite number of elements x_1, \dots, x_m in c (some of x_k is regular), i.e., $\mathfrak{c}^* = (x_1, \dots, x_m)^*$, $x_k \in \mathfrak{c}$. Then by the definition of $M_1 \circ M_2$, we can take $(\sum_{i=1}^{n(k)} a_i^{(k)} b_i^{(k)})^*$ which contains x_k $(k=1,\cdots,m)$ where $a_i^{(k)} \subseteq M_1$ and $b_i^{(k)} \subseteq M_2$. Hence $x_f \in \sum_{k=1}^{m} (\sum_{i=1}^{n(k)} a_i^{(k)} b_i^{(k)})^*$ $(j=1,\cdots,m)$, and $c \subseteq c^* = (x_1,\cdots,x_m)^* \subseteq (\sum_{k=1}^{m} (\sum_{i=1}^{n(k)} a_i^{(k)} b_i^{(k)})^*)^*$ $= (\sum_{k=1}^{m} \sum_{i=1}^{n(k)} a_i^{(k)} b_i^{(k)})^* \equiv (\sum_{i=1}^{n} a_i b_i)^*$. Then we have $\nu(\mathfrak{p}; \mathfrak{c}) \ge \nu(\mathfrak{p}; (\sum_{i=1}^{n} a_i b_i)^*)$ $= \operatorname{Min} \{\nu(\mathfrak{p}; \mathfrak{a}_i) + \nu(\mathfrak{p}; b_i)\} \ge \inf \{\nu(\mathfrak{p}; \mathfrak{a}_i) \mid \mathfrak{a}_i \subseteq M_1\} + \inf \{\nu(\mathfrak{p}; \mathfrak{c}) \mid b_i \subseteq M_2\}$ $= \nu(\mathfrak{p}; M_1) + \nu(\mathfrak{p}; M_2)$. This implies $\nu(\mathfrak{p}; M_1 \circ M_2) = \inf \{\nu(\mathfrak{p}; \mathfrak{c}) \mid c^* \subseteq M_1 \circ M_2\}$ $\ge \nu(\mathfrak{p}; M_1) + \nu(\mathfrak{p}; M_2)$. Since $\nu(\mathfrak{p}; \mathfrak{a}) + \nu(\mathfrak{p}; \mathfrak{b}) = \nu(\mathfrak{p}; \mathfrak{a}b) \ge \nu(\mathfrak{p}; M_1 \circ M_2)$ for any $\mathfrak{a} \subseteq M_1$ and $\mathfrak{b} \subseteq M_2$, we have $\nu(\mathfrak{p}; M_1) + \nu(\mathfrak{p}; \mathfrak{b}) = \inf_{\mathfrak{a} \subseteq M_1} \{\nu(\mathfrak{p}; \mathfrak{a}) + \nu(\mathfrak{p}; \mathfrak{b})\}$ $\ge \nu(\mathfrak{p}; M_1 \circ M_2), \quad \nu(\mathfrak{p}; M_1) + \nu(\mathfrak{p}; M_2) \ge \nu(\mathfrak{p}; M_1 \circ M_2)$. Hence the opposite inequality is true. It is evident that f is order-preserving. f is therefore an l-semigroup-isomorphism from \mathfrak{M} to $\bigoplus_{\mathfrak{p}}^* \mathbf{Z}_{-\infty}$. If the arithmetic holds for \mathfrak{o} , then the l-semigroup \mathfrak{M} of all submodules containing regular elements is isomorphic to $\bigoplus_{\mathfrak{p}}^* \mathbf{Z}_{-\infty}$ as an l-semigroup.

In order to prove the last part of the theorem we show that a submodule M is a subring containing o, if and only if the coordinates of the vector $f(M) = [\nu_M(\mathfrak{p})]$ consists only of 0 and $-\infty$; and in this case $M = o_P$ the P-component of o where $P = P_0(M)$. We suppose that M is a subring which contains o strictly. Since there exists a prime ideal \mathfrak{p} such that $\mathfrak{p}^{-1} \subseteq M$, $\mathfrak{p} \in \mathfrak{P}$ (cf. Hilfssatz 6, p. 119 in [1]), we have $\mathfrak{p}^{-n} \subseteq M$ for all $n \in \mathbb{Z}^+$, the positive integers. Hence we obtain $\nu_{\mathcal{M}}(\mathfrak{p})$ $= \inf \{\nu(\mathfrak{p}; \mathfrak{a}) | \mathfrak{a} \subseteq M\} \leq \inf \{\nu(\mathfrak{p}; \mathfrak{p}^{-n}) | n \in \mathbf{Z}^+\} = \inf \{-n | n \in \mathbf{Z}^+\} = -\infty.$ If \mathfrak{p}^{-1} is not contained in *M*, we can show $\nu_{\mathcal{M}}(\mathfrak{p})=0$ as follows: Since $o \subseteq M, M$ contains a pure fractional ideal. Let F be the set of the pure fractional ideals in *M*. Then evidently $\nu_M(\mathfrak{p}) \leq \inf \{\nu(\mathfrak{p}; \mathfrak{b}) | \mathfrak{b} \in F\} \equiv \alpha$. To prove the opposite inequality we take an arbitrary ideal a in M. Then there exists a pure fractional ideal a' such that $a \subseteq a' \subseteq M$ (e.g. $\alpha' = \alpha + 0$. Then we have $\nu(\mathfrak{p}; \alpha) \ge \nu(\mathfrak{p}; \alpha') \ge \alpha$. Hence we get $\nu_{\mathcal{M}}(\mathfrak{p})$ $=\inf \{\nu(\mathfrak{p}; \mathfrak{b}) | \mathfrak{b} \in F\}$. Suppose that there exists an ideal $\mathfrak{b} \in F$ such that p^{-1} appears among the prime factors of $b, b = p^{-1} \cdot b'$, say. Then we have $\mathfrak{p}^{-1} \subseteq \mathfrak{b} \subseteq M$, a contradiction. Hence $\nu(\mathfrak{p}; \mathfrak{b}) = 0$ for all $\mathfrak{b} \in F$. We have therefore $\nu_M(\mathfrak{p}) = 0$ as desired. Conversely let M be a submodule such that the coordinates of f(M) consists only of 0 and $-\infty$. An ideal a is contained in M if and only if both $P_0(M) \subseteq P_0(a) \cup P_+(a)$ and $P_{-\infty}(M) \subseteq P_{\mathbb{Q}}(\mathfrak{a}) \cup P_{\pm}(\mathfrak{a}) \text{ hold, where } P_{-\infty}(M) = \{\mathfrak{p} \in \mathfrak{P} \mid \nu_{M}(\mathfrak{p}) = -\infty\}.$ In order to show that M is a subring of R it is sufficient to show that ab $\subseteq M$ for any ideals a and b in M. Because, since o is regular there is an ideal which is contained in M and contains an arbitrary fixed element of M. Take two non-zero ideals a and b in M. Then since f(ab) = f(a) + f(b) we can show $P_0(M) \subseteq P_0(ab) \cup P_+(ab)$ and $P_{-\infty}(M)$ $\subseteq P_0(ab) \cup P_+(ab)$. This means $ab \subseteq M$. $M = o_P$, $P = P_0(M)$, is easy to see. The representation (*) is obtained by using the additive property of f. This completes the proof.

K. MURATA

Remark. Let M be a submodule such that $|P_{-}(M)|$ is finite. Then $\sum \mathfrak{p}^{\nu(\mathfrak{p})} = (\prod \mathfrak{p}^{-\nu(\mathfrak{p})})^{-1}$, and M is the *P*-component of the ideal

$$\prod_{\mathfrak{p}\in P_+} \mathfrak{P}^{\nu(\mathfrak{p})} \prod_{\mathfrak{p}\in P_-} \mathfrak{P}^{\nu(\mathfrak{p})}$$

Moreover $M = a_P$ (the *P*-component of an ideal a) if and only if

$$\mathfrak{a} = \prod_{\mathfrak{p} \in P_+} \mathfrak{p}^{\mathfrak{p}(\mathfrak{p})} \prod_{\mathfrak{p} \in P_-} \mathfrak{p}^{\mathfrak{p}(\mathfrak{p})} \prod_{\mathfrak{p} \in Q} \mathfrak{p}^{\rho},$$

where Q is a finite subset of $P_{-\infty}(M)$ and ρ is an integer. It is then obvious that a submodule M is a P-component of an ideal if and only if both $P_{-\infty}(\mathfrak{o}_P) = P_{-\infty}(M)$ and $|P_{\mathfrak{o}}(\mathfrak{o}_P) - P_{\mathfrak{o}}(M)| \leq \infty$ hold.

References

- [1] K. Asano: Zur Arithmetik in Schiefringen. I. Osaka Math. J., 1, 98-134 (1949).
- [2] K. Asano and K. Murata: Arithmetical ideal theory in semigroups. Journ. Inst. of Polytec., Osaka City Univ., 4, 9-33 (1953).
- [3] C. Ayoub: On the submodules of a field. Monatsh. Math., 72, 193-199 (1968).
- [4] N. Bourbaki: Algèbre commutative (Chapitre 7). Éléments de Math. XXXI (1965).
- [5] L. Fuchs: Partially ordered algebraic systems. International Series of Monographs on Pure and Applied Math., 28 (1963).