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134. On Submodules over an Asano Order of a Ring*

By Kentaro MURATA

(Comm. by Kenjiro SHODn, M. Z. ., Oct. 12, 1974)

1. Let R be a ring with unity quantity, and let o be a regular
maximal order of R. The term ideal means a non-zero fractional two-
sided o-ideal in R. We shall use small German letters a, 5, with or
without suffices to denote ideals in R. The inverse of an ideal a will
be denoted by -, and a* will denote a--. Two ideals a and are said
to be quasi-equal i a-=5-; in symbol" a5. The term submodule
means a two-sided o-submodule which contains at least one regular
element of R. A submodule M is said to be closed if whenever aM
implies a*M. It is then clear that every submodule is closed when
the arithmetic holds for (cf. [1, 2]). For any two closed submodules
M and M we define a product MoM to be the set-theoretical union of
all ideals ,__ 5)* whereM and 5M (i-1, n) Now the..
set G o all ideals a such that a--* orms a commutative group under
the multiplication "o" defined by aoS-(aS)*=(a*5*)*; because G is a
(conditionally) complete/-group under the above multiplication and the
inclusion (cf. p. 91 in [5]). Hence MoM2=MoM, and if the ascending
chain condition in the sense of quasi-equality holds for integral ideals,
the set of all closed submodules forms a commutative /-semigroup
under the above multiplication and the set-inclusion (cf. Lemmas 5.1
and 5.2 in [2]).

Let be the set of all prime ideals which are not quasi-equal to
let I1 be the cardinal number of , and let Z_ be the set-theoretical
union of the rational integers Z and --oo. Then the complete direct
sum Z_ (l ]-copies) of Z_ is an /-semigroup under the addition
[m,] + [n,]-- [m, + n,] and the partial order [m,] >- [n,]@m<_ n, for all
p e , where m,, n e Z_. Let .$ Z_ be the set of all vectors [m]
such that m,<_ 0 for almost all e . Then it forms an/-subsemigroup
of Z_.

The aim of the present note is to prove the following
Theorem. If the ascending chain condition in the sense of quasi-

equality (cf. p. 109 in [1]) holds for integral ideals, the 1-semigroup

of all non-zero closed submodules is isomorphic to Z_ as an l-semi-
group. If in particular the arithmetic holds for o, the 1-semigroup
of all submodules (containing regular elements) is isomorphic to
as an 1-semigroup, and every submodule M e ) is written as follows"
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P+
where v(p)--v(p) is the p-coordinate of the vector in @ Z_ which
corresponds to M by the above isomorphism, P/ =P/(M) is the prime
ideals with ,(p)0, P_--P_(M) is the prime ideals with-oo,(p)
0, op is the P-component of o (cf. [1, 3]) for the set P=Po(M)
tJP+(M)LJP_(M) the prime ideals with v(p)-0, and denotes the
restricted direct sum.

P/(M) is a finite set for each submodule M, but both P_(M) and
Po(M) are not necessarily finite.

The first half of Theorem is a generalization of [3, Theorem 1] in
the case of Dedekind domains (cf. [4, 2]) to a non-commutative case.

2. Proof of Theorem. Let a be an ideal, and let aa*-lflp
a e Z, be the factorization of a* into prime ideals O’s with po, where
/J,a means (//,)* (cf. p. 13 in [2]). In the following we use ,(p; a) to
denote a, the p-exponent of a*. Then we have

(1) ,(p; a)-0 for almost all p e .
(2) ,(; a)=,(p; a*).
(3) ,(p a + 5)-- Min {,(p a), ,(p 5)}.
(4) ,(p aS)=,(p a) +,(p 5).
(5) a_c_5 implies v(p;)>_v(p;
(6) If v(p; a)>_v(p; 5) for all pe, then a_c_5*.
(7) If ,(p a) ,(p 5) for all p e , then
Ad (3)" It follows from (a + B)* (a* + 5*)*. Ad (4)" It follows

from (a5)* :(a’B*)* (cf. p. 13 in [2]). (5) is immediate from (3). The
other properties are evident.

The initial stage in our proof will be a generalization of v(p for
submodules. For any M e we define

v(p; M)--inf {v(p; a) laM}.
Then, fixing M and running p through , v(p; M) is considered as
map from into @ Z_. In this state it is convenient to use v(p) or
v instead of v(p;M). For any fixed ideal a0 in M we have
_<v(p; a0). Hence v(p)_<0 for almost all p e .

Let a be a map from into @ Z_ such that a(p)_<0 for almost
all p e , and let M<a} be the set-theoretical union of all ideals a such
that v(p; a)_>a(p) for all p e . Then M<a} is a closed submodule in
our sense. For, we let be an ideal contained in M<a}. Then by the
ascending chain condition in the sense of quasi-equality and by the
regularity of o, we can choose a finite number of elements b,..., b in

such that at least one of the b, is regular and 5*-(b,..., b)*.
Taking a, such that b,, a,M<a}, we have b*-(b,...,b)*
_c_ ,: *)*--(y].,: a)* Hence v(p; b*)>_v(p; *):,: ) ,(; ,=)
--Min {v(p; ,)}_>a(p). Thus we get 5"
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We note here that for each ideal aM(, there exists an ideal
such that ,(p; )<_,(p; ), M. For, if there is no such ideal we have
,(p; c),(p; ) for all (non-zero) ideal M. Since ,(p; a):/:-c, the
set of all ,(p; ), cM, has a lower bound. Hence there exists an in-
teger no such that ,(P M) no ,(P o) for a suitable coM. By the
assumption we have n0=,(P; c0),(P; ). However M(, implies
,(P; a)>__,(P)--n0, which is a contradiction.

Now we prove M(,=M. MM(, is evident. Conversely,
let a be an arbitrary (non-zero) ideal in M(,, and let p,..., p be
the all prime ideals p such that ,(p; )=/: 0, p e . Then we can choose
a suitable ideal c such that ,(p; c*)_<,(p; ), M. Next we let
p/, ..., p be all prime ideals p, if there exists, such that ,(p; c)0
and p does not appear among p,..., p. Then we can take suitable
ideals such that ,(p c)<_,(p a), cM (i-2, .., n). Then clearly
c--c+%+...+c,___M, and c*M. For any p(j-1,...,n),wehave
(p;c)_<(p;%)<_(p;a), and for any pe different from
(]--l,...,n), we have ,(p; c)_<,(p; c)_<0-,(p; a). Thus we obtain
a*, aM as desired.

Next we prove ,<>=a. Let p, ..., p be the set of all the prime
ideals p such that a(p)0, p e 3. We form c-p(,o.., p(. Then
evidently c*= and ,(p )--a(p) for i= 1, ., n. If p:/= p (i= 1, ., n),
p e, then ,(p; c)-0>_a(p). Hence M(@, and hence ,(p;
_,(p c)--a(p) for i= 1, ., n. If p’:/: p (i= 1, ..., n), p’ e , then put-
ting a-(cp’("))*, we have ,(p; a)-a(p) and ,(p’; a)=a(p’). For any
such that p" :/= p (i- 1, ., n), p" :/= p’, p" e 3, we have ,(p" a) 0 >_ a(p").
Hence aM(a}, and hence ,(p’; M(a})<_,(p’ a)=a(p’) for an arbitrary
p’=/=p (i=l,...,n), p’e 3. Above all we get ,(p;M(@)<_a(p) or all
p e 3. Thus we have ,<>_<a. ,n<>>_a is evident by the definition of
,n<>. Therefore we obtain ,n<>-a as desired.

By the above argument we have

M-v.--M<VM>--M,
Accordingly the map Mv gives a bijection from 3 to the set of all
a. Now it is clear that the set of all vectors [(p)]-{a() P e ) coincides
with $ Z_. We shall show the map f"

Mf(M)-- [,M(p)]
gives an /-semigroup-isomorphism from to $ Z_. For, let M,
M e 3, and take an arbitrary (non-zero) ideal contained in MoM.
Then by using the ascending chain condition in the sense of quasi-
equality for integral ideals we can take an ideal (__ ab)* which con-
tains c. In fact by the ascending chain condition in the sense of
quasi-equality c* is generated by a finite number of elements x,..., x
in c (some of x is regular), i.e., c*--(x, ..., x)*, x e c. Then by the
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definition of MoM2 we can take v,() () () ,= a 5 which contains x
(k 1,.. m)wherea)MandSM2.. Hencex e=)a ) *
(] 1, .-., m), and c c* (x, ..., x)* (= ((A) a)5))*)*

== Then we have,(p c) ,(p (=a5))

=,(p M) + ,(p M). This implies ,(p M M) in {,(p c) c* M M}
,(p M) + ,(p M). Since ,(p a) + ,(p 5) =,(p aS) ,(p MoM) or
any aM and 5M, we have ,(p M) +,(p 5)-in2, {,(p a) +,(p ;5)}
,(p MoM), ,(p M) +,(p M),(p MoM). Hence the opposite
inequality is true. It is evident that f is order-preserving, f is there-
ore an/-semigroup-isomorphism rom to $Z_. I the arithmetic
holds or o, then the /-semigroup o all submodules containing
regular elements is isomorphic to $ Z_ as an/-semigroup.

In order to prove the last part o the theorem we show that a sub-
module M is a subring co.ntaining o, if and only if the coordinates
the vector f(M)--[,(p)] consists only o 0 and --; and in this case
M--oe the P-component o o where P-Po(M). We suppose that M is
a subring which contains o strictly. Since there exists a prime ideal
p such that p-M, p e (cf. Hilssatz 6, p. 119 in [1]), we have
or all n e Z+, the positive integers. Hence we obtain
=inf {,(p; a)] aM}inf {,(p; p-)In e Z+}=inf {--nn e Z+} --.
p- is not contained in M, we can show ,(p)=0 as follows" Since
oM,M contains a pure ractional ideal. Let F be the set of the pure
fractional ideals in M. Then evidently ,(p) inf {,(p 5) ]5 e F}-
To prove the opposite inequality we take an arbitrary ideal a in M.
Then there exists a pure ractional ideal d such that aa’M (e.g.
a’--a+o). Then we have ,(p;a),(p;a’)a. Hence we get

inf {,(p 5)]5 e F}. Suppose that there exists an ideal 5 e F such that
p- appears among the prime actors of 5,5-p-.5’, say. Then we

have p-5M, a contradiction. Hence ,(p; 5)-0 or all 5 e F. We
have therefore ,(p)=0 as desired. Conversely let M be a submodule
such that the coordinates o f(M) consists only o 0 and --. An
ideal a is contained in M if and only if both Po(M)Po(a)UP+(a) and
P_(M)Po()UP(a) hold, where P_(M)={pe,(p)----}.
order to show that M is a subring o R it is sufficient to show that
M or any ideals a and 5 in M. Because, since o is regular there is
an ideal which is contained in M and contains an arbitrary fixed
element o M. Take two non-zero ideals a and 5 in M. Then since

f(a5)=f(a)+f(5) we can show Po(M)Po(a5)UP+(aS) and P_(M)
Po(5)UP(aS). This means aSM. M=oe, P=Po(M), is easy to
see. The representation (,) is obtained by using the additive property
of f. This completes the proo.
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Remark. Let M be a submodule such that IP_(M) lis finite. Then
P()-(I-I P-())-, and M is the P-component of the ideal

P+ P_

Moreover M----av (he P-eomponen of an ideal a) if and only if

P+ P- Q

where Q is a finite subset of P_(M) and p is an integer. It is then
obvious that a submodule M is a P-component of an ideal if and only
if both P_.(op)=P_(M) and IPo(op)--Po(M)]< oo hold.
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