134. On Submodules over an Asano Order of a Ring*)

By Kentaro Murata
(Comm. by Kenjiro Shoda, M. J. A., Oct. 12, 1974)

1. Let R be a ring with unity quantity, and let o be a regular maximal order of R. The term ideal means a non-zero fractional twosided \mathfrak{o}-ideal in R. We shall use small German letters $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ with or without suffices to denote ideals in R. The inverse of an ideal \mathfrak{a} will be denoted by \mathfrak{a}^{-1}, and \mathfrak{a}^{*} will denote \mathfrak{a}^{-1-1}. Two ideals \mathfrak{a} and \mathfrak{b} are said to be quasi-equal if $\mathfrak{a}^{-1}=\mathfrak{b}^{-1}$; in symbol: $\mathfrak{a \sim b}$. The term submodule means a two-sided \mathfrak{p}-submodule which contains at least one regular element of R. A submodule M is said to be closed if whenever $\mathfrak{a} \subseteq M$ implies $\mathfrak{a}^{*} \subseteq M$. It is then clear that every submodule is closed when the arithmetic holds for 0 (cf. [1, § 2]). For any two closed submodules M_{1} and M_{2} we define a product $M_{1} \circ M_{2}$ to be the set-theoretical union of all ideals $\left(\sum_{i=1}^{n} \mathfrak{a}_{i} \mathfrak{b}_{i}\right)^{*}$ where $\mathfrak{a}_{i} \subseteq M_{1}$ and $\mathfrak{b}_{i} \subseteq M_{2}(i=1, \cdots, n)$. Now the set G of all ideals \mathfrak{a} such that $\mathfrak{a}=\mathfrak{a}^{*}$ forms a commutative group under the multiplication " \circ " defined by $\mathfrak{a} \circ \mathfrak{b}=(\mathfrak{a b})^{*}=\left(\mathfrak{a}^{*} \mathfrak{b}^{*}\right)^{*}$; because G is a (conditionally) complete l-group under the above multiplication and the inclusion (cf. p. 91 in [5]). Hence $M_{1} \circ M_{2}=M_{2} \circ M_{1}$, and if the ascending chain condition in the sense of quasi-equality holds for integral ideals, the set \mathfrak{M} of all closed submodules forms a commutative l-semigroup under the above multiplication and the set-inclusion (cf. Lemmas 5.1 and 5.2 in [2]).

Let \Re be the set of all prime ideals which are not quasi-equal to 0 , let $|\mathfrak{R}|$ be the cardinal number of \mathfrak{P}, and let $\mathbf{Z}_{-\infty}$ be the set-theoretical union of the rational integers \mathbf{Z} and $-\infty$. Then the complete direct sum $\oplus_{\mathfrak{\beta}} \mathbf{Z}_{-\infty}\left(|\mathfrak{\beta}|\right.$-copies) of $\mathbf{Z}_{-\infty}$ is an l-semigroup under the addition $\left[m_{\mathfrak{p}}\right]+\left[n_{\mathfrak{p}}\right]=\left[m_{\mathfrak{p}}+n_{\mathfrak{p}}\right]$ and the partial order $\left[m_{\mathfrak{p}}\right] \succ\left[n_{\mathfrak{p}}\right] \Leftrightarrow m_{\mathfrak{p}} \leq n_{\mathfrak{p}}$ for all $\mathfrak{p} \in \mathfrak{\beta}$, where $m_{\mathfrak{p}}, n_{\mathfrak{p}} \in \mathbf{Z}_{-\infty}$. Let $\oplus_{\Re>}^{*} \mathbf{Z}_{-\infty}$ be the set of all vectors [$m_{\mathfrak{p}}$] such that $m_{\mathfrak{p}} \leq 0$ for almost all $\mathfrak{p} \in \mathfrak{\beta}$. Then it forms an l-subsemigroup of $\oplus_{\mathfrak{B}} \mathbf{Z}_{-\infty}$.

The aim of the present note is to prove the following
Theorem. If the ascending chain condition in the sense of quasiequality (cf. p. 109 in [1]) holds for integral ideals, the l-semigroup \mathfrak{M} of all non-zero closed submodules is isomorphic to $\oplus_{\beta}^{*} \mathbf{Z}_{-\infty}$ as an l-semigroup. If in particular the arithmetic holds for \mathfrak{o}, the l-semigroup \mathfrak{M} of all submodules (containing regular elements) is isomorphic to $\oplus_{\Downarrow}^{*} \mathbf{Z}_{-}$ as an l-semigroup, and every submodule $M \in \mathfrak{M}$ is written as follows:
*) Dedicated to professor Kiiti Morita on his 60 th birthday.

$$
\begin{equation*}
\left.M=\prod_{p \in P_{+}} \mathfrak{p}^{2(p)}\left(\sum_{p \in P_{-}} \mathfrak{p}^{\nu(p)}\right)\right)_{o_{P}} \tag{*}
\end{equation*}
$$

where $\nu(\mathfrak{p})=\nu_{M}(\mathfrak{p})$ is the \mathfrak{p}-coordinate of the vector in $\oplus_{\mathfrak{\beta}}^{*} \mathbf{Z}_{-\infty}$ which corresponds to M by the above isomorphism, $P_{+}=P_{+}(M)$ is the prime ideals with $\nu_{M}(\mathfrak{p})>0, P_{-}=P_{-}(M)$ is the prime ideals with $-\infty<\nu_{M}(\mathfrak{p})$ $<0, \mathfrak{1}_{P}$ is the P-component of $\mathfrak{0}$ (cf. [1, §3]) for the set $P=P_{0}(M)$ $\cup P_{+}(M) \cup P_{-}(M)$ the prime ideals with $\nu_{M}(\mathfrak{p})=0$, and Σ denotes the restricted direct sum.
$P_{+}(M)$ is a finite set for each submodule M, but both $P_{-}(M)$ and $P_{0}(M)$ are not necessarily finite.

The first half of Theorem is a generalization of [3, Theorem 1] in the case of Dedekind domains (cf. [4, § 2]) to a non-commutative case.
2. Proof of Theorem. Let \mathfrak{a} be an ideal, and let $\mathfrak{a} \sim \mathfrak{a}^{*}=\Pi{ }^{\circ} \mathfrak{p}^{\alpha}$, $\alpha \in \mathbf{Z}$, be the factorization of \mathfrak{a}^{*} into prime ideals $\mathfrak{p} s$ with $\mathfrak{p} \not \mathcal{D}_{\mathfrak{d}}$, where $\grave{\Pi}_{i} \mathfrak{a}_{i}$ means $\left(\Pi_{i} \mathfrak{a}_{i}\right)^{*}$ (cf. p. 13 in [2]). In the following we use $\nu(p ; \mathfrak{a})$ to denote α, the \mathfrak{p}-exponent of \mathfrak{a}^{*}. Then we have
(1) $\nu(\mathfrak{p} ; \mathfrak{a})=0$ for almost all $\mathfrak{p} \in \mathfrak{P}$.
(2) $\nu(\mathfrak{p} ; \mathfrak{a})=\nu\left(\mathfrak{p} ; \mathfrak{a}^{*}\right)$.
(3) $\nu(\mathfrak{p} ; \mathfrak{a}+\mathfrak{b})=\operatorname{Min}\{\nu(\mathfrak{p} ; \mathfrak{a}), \nu(\mathfrak{p} ; \mathfrak{b})\}$.
(4) $\nu(\mathfrak{p} ; \mathfrak{a b})=\nu(\mathfrak{p} ; \mathfrak{a})+\nu(\mathfrak{p} ; \mathfrak{b})$.
(5) $\mathfrak{a} \subseteq \mathfrak{b}$ implies $\nu(\mathfrak{p} ; \mathfrak{a}) \geq \nu(\mathfrak{p} ; \mathfrak{b})$.
(6) If $\nu(\mathfrak{p} ; \mathfrak{a}) \geq \nu(\mathfrak{p} ; \mathfrak{b})$ for all $\mathfrak{p} \in \mathfrak{P}$, then $\mathfrak{a} \subseteq \mathfrak{b}^{*}$.
(7) If $\nu(\mathfrak{p} ; \mathfrak{a})=\nu(\mathfrak{p} ; \mathfrak{b})$ for all $\mathfrak{p} \in \mathfrak{B}$, then $\mathfrak{a} \sim \mathfrak{b}$.

Ad (3): It follows from $(\mathfrak{a}+\mathfrak{b})^{*}=\left(\mathfrak{a}^{*}+\mathfrak{b}^{*}\right)^{*}$. Ad (4): It follows from $(\mathfrak{a b})^{*}=\left(\mathfrak{a}^{*} \mathfrak{b}^{*}\right)^{*}$ (cf. p. 13 in [2]). (5) is immediate from (3). The other properties are evident.

The initial stage in our proof will be a generalization of $\nu(\mathfrak{p}$;) for submodules. For any $M \in \mathfrak{M}$ we define

$$
\nu(\mathfrak{p} ; M)=\inf \{\nu(\mathfrak{p} ; \mathfrak{a}) \mid \mathfrak{a} \subseteq M\}
$$

Then, fixing M and running \mathfrak{p} through $\mathfrak{P}, \nu(\mathfrak{p} ; M)$ is considered as a map from \mathfrak{B} into $\oplus_{\mathfrak{B}} \mathbf{Z}_{-\infty}$. In this state it is convenient to use $\nu_{M}(\mathfrak{p})$ or ν_{M} instead of $\nu(\mathfrak{p} ; M)$. For any fixed ideal \mathfrak{a}_{0} in M we have $\nu_{M}(\mathfrak{p})$ $\leq \nu\left(\mathfrak{p} ; \mathfrak{a}_{0}\right)$. Hence $\nu_{M}(\mathfrak{p}) \leq 0$ for almost all $\mathfrak{p} \in \mathfrak{\beta}$.

Let σ be a map from \mathfrak{R} into $\oplus_{\mathfrak{B}} \mathbf{Z}_{-\infty}$ such that $\sigma(\mathfrak{p}) \leq 0$ for almost all $\mathfrak{p} \in \mathfrak{P}$, and let $M\langle\sigma\rangle$ be the set-theoretical union of all ideals \mathfrak{a} such that $\nu(\mathfrak{p} ; \mathfrak{a}) \geq \sigma(\mathfrak{p})$ for all $\mathfrak{p} \in \mathfrak{p}$. Then $\boldsymbol{M}\langle\sigma\rangle$ is a closed submodule in our sense. For, we let \mathfrak{b} be an ideal contained in $\boldsymbol{M}\langle\sigma\rangle$. Then by the ascending chain condition in the sense of quasi-equality and by the regularity of \mathfrak{o}, we can choose a finite number of elements b_{1}, \cdots, b_{n} in \mathfrak{b} such that at least one of the b_{i} is regular and $\mathfrak{b}^{*}=\left(b_{1}, \cdots, b_{n}\right)^{*}$. Taking \mathfrak{a}_{i} such that $\mathfrak{a}_{i} \ni b_{i}, \mathfrak{a}_{i} \subseteq \boldsymbol{M}\langle\sigma\rangle$, we have $\mathfrak{b}^{*}=\left(b_{1}, \cdots, b_{n}\right)^{*}$ $\subseteq\left(\sum_{i=1}^{n} \mathfrak{a}_{i}^{*}\right)^{*}=\left(\sum_{i=1}^{n} \mathfrak{a}_{i}\right)^{*}$. Hence $\nu\left(\mathfrak{p} ; \mathfrak{b}^{*}\right) \geq \nu\left(\mathfrak{p} ;\left(\sum_{i=1}^{n} \mathfrak{a}_{i}\right)^{*}\right)=\nu\left(\mathfrak{p} ; \sum_{i=1}^{n} \mathfrak{a}_{i}\right)$ $=\operatorname{Min}\left\{\nu\left(\mathfrak{p} ; \mathfrak{a}_{i}\right)\right\} \geq \sigma(\mathfrak{p})$. Thus we get $\mathfrak{b}^{*} \subseteq \boldsymbol{M}\langle\sigma\rangle$.

We note here that for each ideal $\mathfrak{a} \subseteq M\left\langle\nu_{M}\right\rangle$ there exists an ideal \mathfrak{c} such that $\nu(\mathfrak{p} ; \mathfrak{c}) \leq \nu(\mathfrak{p} ; \mathfrak{a}), \mathfrak{c} \subseteq M$. For, if there is no such ideal we have $\nu(\mathfrak{p} ; \mathfrak{c})>\nu(\mathfrak{p} ; \mathfrak{a})$ for all (non-zero) ideal $\mathfrak{c} \subseteq M$. Since $\nu(\mathfrak{p} ; \mathfrak{a}) \neq-\infty$, the set of all $\nu(\mathfrak{p} ; \mathfrak{c}), \mathfrak{c} \subseteq M$, has a lower bound. Hence there exists an integer n_{0} such that $\nu(p ; M)=n_{0}=\nu\left(p ; \mathfrak{c}_{0}\right)$ for a suitable $\mathfrak{c}_{0} \subseteq M$. By the assumption we have $n_{0}=\nu\left(\mathfrak{p} ; \mathfrak{c}_{0}\right)>\nu(\mathfrak{p} ; \mathfrak{a})$. However $\mathfrak{a} \subseteq M\left\langle\nu_{M}\right\rangle$ implies $\nu(\mathfrak{p} ; \mathfrak{a}) \geq \nu_{M}(\mathfrak{p})=n_{0}$, which is a contradiction.

Now we prove $M\left\langle\nu_{M}\right\rangle=M . \quad M \subseteq M\left\langle\nu_{M}\right\rangle$ is evident. Conversely, let \mathfrak{a} be an arbitrary (non-zero) ideal in $\boldsymbol{M}\left\langle\nu_{M}\right\rangle$, and let $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{m}$ be the all prime ideals \mathfrak{p} such that $\nu(p ; a) \neq 0, \mathfrak{p} \in \mathfrak{P}$. Then we can choose a suitable ideal \mathfrak{c}_{1} such that $\nu\left(\mathfrak{p}_{1} ; \mathfrak{c}_{1}^{*}\right) \leq \nu\left(\mathfrak{p}_{1} ; \mathfrak{a}\right), \mathfrak{c}_{1} \subseteq M$. Next we let $\mathfrak{p}_{m+1}, \cdots, \mathfrak{p}_{n}$ be all prime ideals \mathfrak{p}, if there exists, such that $\nu\left(\mathfrak{p} ; \mathfrak{c}_{1}\right)>0$ and \mathfrak{p} does not appear among $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{m}$. Then we can take suitable ideals \mathfrak{c}_{i} such that $\nu\left(\mathfrak{p}_{i} ; \mathfrak{c}_{i}\right) \leq \nu\left(\mathfrak{p}_{i} ; \mathfrak{a}\right), \mathfrak{c}_{i} \subseteq M(i=2, \cdots, n)$. Then clearly $\mathfrak{c}=\mathfrak{c}_{1}+\mathfrak{c}_{2}+\cdots+\mathfrak{c}_{n} \subseteq M$, and $\mathfrak{c}^{*} \subseteq M$. For any $\mathfrak{p}_{j}(j=1, \cdots, n)$, we have $\nu\left(\mathfrak{p}_{j} ; \mathfrak{c}\right) \leq \nu\left(\mathfrak{p}_{j} ; \mathfrak{c}_{j}\right) \leq \nu\left(\mathfrak{p}_{j} ; \mathfrak{a}\right)$, and for any $\mathfrak{p} \in \mathfrak{P}$ different from \mathfrak{p}_{j} $(j=1, \cdots, n)$, we have $\nu(\mathfrak{p} ; \mathfrak{c}) \leq \nu\left(\mathfrak{p} ; \mathfrak{c}_{1}\right) \leq 0=\nu(\mathfrak{p} ; \mathfrak{a})$. Thus we obtain $\mathfrak{a} \subseteq \mathfrak{c}^{*}, \mathfrak{a} \subseteq M$ as desired.

Next we prove $\nu_{M\langle\sigma\rangle}=\sigma$. Let $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{n}$ be the set of all the prime ideals \mathfrak{p} such that $\sigma(\mathfrak{p})>0, \mathfrak{p} \in \mathfrak{P}$. We form $\mathfrak{c}=\mathfrak{p}_{1}^{o\left(p_{1}\right)} \circ \cdots \circ \mathfrak{p}_{n}^{o\left(p_{n}\right)}$. Then evidently $\mathfrak{c}^{*}=\mathfrak{c}$ and $\nu\left(\mathfrak{p}_{i} ; \mathfrak{c}\right)=\sigma\left(\mathfrak{p}_{i}\right)$ for $i=1, \cdots, n$. If $\mathfrak{p} \neq \mathfrak{p}_{i}(i=1, \cdots, n)$, $\mathfrak{p} \in \mathfrak{P}$, then $\nu(\mathfrak{p} ; \mathfrak{c})=0 \geq \sigma(\mathfrak{p})$. Hence $\mathfrak{c} \subseteq M\langle\sigma\rangle$, and hence $\nu\left(\mathfrak{p}_{i} ; M\langle\sigma\rangle\right)$ $\leq \nu\left(\mathfrak{p}_{i} ; \mathfrak{c}\right)=\sigma\left(\mathfrak{p}_{i}\right)$ for $i=1, \cdots, n$. If $\mathfrak{p}^{\prime} \neq \mathfrak{p}_{i}(i=1, \cdots, n), \mathfrak{p}^{\prime} \in \mathfrak{F}$, then putting $\mathfrak{a}=\left(\mathfrak{c p}^{\prime o\left(p^{\prime}\right)}\right)^{*}$, we have $\nu\left(\mathfrak{p}_{i} ; \mathfrak{a}\right)=\sigma\left(\mathfrak{p}_{i}\right)$ and $\nu\left(\mathfrak{p}^{\prime} ; \mathfrak{a}\right)=\sigma\left(\mathfrak{p}^{\prime}\right)$. For any $\mathfrak{p}^{\prime \prime}$ such that $\mathfrak{p}^{\prime \prime} \neq \mathfrak{p}_{i}(i=1, \cdots, n), \mathfrak{p}^{\prime \prime} \neq \mathfrak{p}^{\prime}, \mathfrak{p}^{\prime \prime} \in \mathfrak{P}$, we have $\nu\left(\mathfrak{p}^{\prime \prime} ; \mathfrak{a}\right)=0 \geq \sigma\left(\mathfrak{p}^{\prime \prime}\right)$. Hence $\mathfrak{a} \subseteq M\langle\sigma\rangle$, and hence $\nu\left(\mathfrak{p}^{\prime} ; \boldsymbol{M}\langle\sigma\rangle\right) \leq \nu\left(\mathfrak{p}^{\prime} ; \mathfrak{a}\right)=\sigma\left(\mathfrak{p}^{\prime}\right)$ for an arbitrary $\mathfrak{p}^{\prime} \neq \mathfrak{p}_{i}(i=1, \cdots, n), \mathfrak{p}^{\prime} \in \mathfrak{P}$. Above all we get $\nu(\mathfrak{p} ; \boldsymbol{M}\langle\sigma\rangle) \leq \sigma(\mathfrak{p})$ for all $\mathfrak{p} \in \mathfrak{B}$. Thus we have $\nu_{M\langle\sigma\rangle} \leq \sigma . \quad \nu_{M\langle\sigma\rangle} \geq \sigma$ is evident by the definition of $\nu_{M\langle\sigma\rangle}$. Therefore we obtain $\nu_{M\langle\sigma\rangle}=\sigma$ as desired.

By the above argument we have

$$
M_{\mapsto} \mapsto \nu_{M} \mapsto M\left\langle\nu_{M}\right\rangle=M, \quad \sigma \mapsto M\langle\sigma\rangle \mapsto \nu_{M\langle\sigma\rangle}=\sigma .
$$

Accordingly the map $M_{\mapsto \nu_{M}}$ gives a bijection from \mathfrak{M} to the set of all σ. Now it is clear that the set of all vectors $[\sigma(\mathfrak{p})]=\{\sigma(\mathfrak{p}) \mid \mathfrak{p} \in \mathfrak{P}\}$ coincides with $\oplus_{\Re}^{*} \mathbf{Z}_{-\infty}$. We shall show the map f :

$$
M_{\mapsto} \mapsto f(M)=\left[\nu_{M}(\mathfrak{p})\right]
$$

gives an l-semigroup-isomorphism from \mathfrak{M} to $\oplus_{\circledast}^{*} \mathbf{Z}_{-\infty}$. For, let M_{1}, $M_{2} \in \mathfrak{M}$, and take an arbitrary (non-zero) ideal c contained in $M_{1} \circ M_{2}$. Then by using the ascending chain condition in the sense of quasiequality for integral ideals we can take an ideal ($\sum_{i=1}^{n} a_{i} \mathfrak{b}_{i}$)* which contains c. In fact by the ascending chain condition in the sense of quasi-equality c^{*} is generated by a finite number of elements x_{1}, \cdots, x_{m} in \mathfrak{c} (some of x_{k} is regular), i.e., $\mathfrak{c}^{*}=\left(x_{1}, \cdots, x_{m}\right)^{*}, x_{k} \in \mathfrak{c}$. Then by the
definition of $M_{1} \circ M_{2}$, we can take $\left(\sum_{i=1}^{n(k)} \mathfrak{a}_{i}^{(k)} \mathfrak{b}_{i}^{(k)}\right)^{*}$ which contains x_{k} $(k=1, \cdots, m)$ where $\mathfrak{a}_{i}^{(k)} \subseteq M_{1}$ and $\mathfrak{b}_{i}^{(k)} \subseteq M_{2}$. Hence $x_{j} \in \sum_{k=1}^{m}\left(\sum_{i=1}^{n(k)} \mathfrak{a}_{i}^{(k)} \mathfrak{b}_{i}^{(k)}\right)^{*}$ $(j=1, \cdots, m), \quad$ and $\quad c \subseteq c^{*}=\left(x_{1}, \cdots, x_{m}\right)^{*} \subseteq\left(\sum_{k=1}^{m}\left(\sum_{i=1}^{n(k)} \mathfrak{a}_{i}^{(k)} \mathfrak{b}_{i}^{(k)}\right)^{*}\right)^{*}$ $=\left(\sum_{k=1}^{m} \sum_{i=1}^{n(k)} \mathfrak{a}_{i}^{(k)} \mathfrak{b}_{i}^{(k)}\right)^{*} \equiv\left(\sum_{i=1}^{n} \mathfrak{a}_{i} \mathfrak{b}_{i}\right)^{*}$. Then we have $\nu(\mathfrak{p} ; \mathfrak{c}) \geq \nu\left(p ;\left(\sum_{i=1}^{n} \mathfrak{a}_{i} \mathfrak{b}_{i}\right)^{*}\right)$ $=\operatorname{Min}\left\{\nu\left(\mathfrak{p} ; \mathfrak{a}_{i}\right)+\nu\left(\mathfrak{p} ; \mathfrak{b}_{i}\right)\right\} \geq \inf \left\{\nu\left(\mathfrak{p} ; \mathfrak{a}_{i}\right) \mid \mathfrak{a}_{i} \subseteq M_{1}\right\}+\inf \left\{\nu\left(\mathfrak{p} ; \mathfrak{b}_{i}\right) \mid \mathfrak{b}_{i} \subseteq M_{2}\right\}$ $=\nu\left(\mathfrak{p} ; M_{1}\right)+\nu\left(\mathfrak{p} ; M_{2}\right)$. This implies $\nu\left(\mathfrak{p} ; M_{1} \circ M_{2}\right)=\inf \left\{\nu(\mathfrak{p} ; \mathfrak{c}) \mid c^{*} \subseteq M_{1} \circ M_{2}\right\}$ $\geq \nu\left(\mathfrak{p} ; M_{1}\right)+\nu\left(\mathfrak{p} ; M_{2}\right)$. Since $\nu(\mathfrak{p} ; \mathfrak{a})+\nu(\mathfrak{p} ; \mathfrak{b})=\nu(\mathfrak{p} ; \mathfrak{a b}) \geq \nu\left(\mathfrak{p} ; M_{1} \circ M_{2}\right)$ for any $\mathfrak{a} \subseteq M_{1}$ and $\mathfrak{b} \subseteq M_{2}$, we have $\nu\left(\mathfrak{p} ; M_{1}\right)+\nu(\mathfrak{p} ; \mathfrak{b})=\inf _{\mathfrak{a} \subseteq M_{1}}\{\nu(\mathfrak{p} ; \mathfrak{a})+\nu(\mathfrak{p} ; \mathfrak{b})\}$ $\geq \nu\left(p ; M_{1} \circ M_{2}\right), \nu\left(\mathfrak{p} ; M_{1}\right)+\nu\left(\mathfrak{p} ; M_{2}\right) \geq \nu\left(\mathfrak{p} ; M_{1} \circ M_{2}\right)$. Hence the opposite inequality is true. It is evident that f is order-preserving. f is therefore an l-semigroup-isomorphism from \mathfrak{M} to $\oplus_{\beta}^{*} \mathbf{Z}_{-\infty}$. If the arithmetic holds for \mathfrak{o}, then the l-semigroup \mathfrak{M} of all submodules containing regular elements is isomorphic to $\oplus_{\beta<}^{*} \mathbf{Z}_{-\infty}$ as an l-semigroup.

In order to prove the last part of the theorem we show that a submodule M is a subring containing \mathfrak{o}, if and only if the coordinates of the vector $f(M)=\left[\nu_{M}(\mathfrak{p})\right]$ consists only of 0 and $-\infty$; and in this case $M=\mathfrak{o}_{P}$ the P-component of \mathfrak{o} where $P=P_{0}(M)$. We suppose that M is a subring which contains \mathfrak{o} strictly. Since there exists a prime ideal \mathfrak{p} such that $\mathfrak{p}^{-1} \subseteq M, \mathfrak{p} \in \mathfrak{P}$ (cf. Hilfssatz 6, p. 119 in [1]), we have $\mathfrak{p}^{-n} \subseteq M$ for all $n \in \mathbf{Z}^{+}$, the positive integers. Hence we obtain $\nu_{M}(\mathfrak{p})$ $=\inf \{\nu(\mathfrak{p} ; \mathfrak{a}) \mid \mathfrak{a} \subseteq M\} \leq \inf \left\{\nu\left(\mathfrak{p} ; \mathfrak{p}^{-n}\right) \mid n \in \mathbf{Z}^{+}\right\}=\inf \left\{-n \mid n \in \mathbf{Z}^{+}\right\}=-\infty$. If \mathfrak{p}^{-1} is not contained in M, we can show $\nu_{M}(\mathfrak{p})=0$ as follows: Since $\mathfrak{O} \subseteq M, M$ contains a pure fractional ideal. Let F be the set of the pure fractional ideals in M. Then evidently $\nu_{M}(\mathfrak{p}) \leq \inf \{\nu(\mathfrak{p} ; \mathfrak{b}) \mid \mathfrak{b} \in \boldsymbol{F}\} \equiv \alpha$. To prove the opposite inequality we take an arbitrary ideal \mathfrak{a} in M. Then there exists a pure fractional ideal \mathfrak{a}^{\prime} such that $\mathfrak{a} \subseteq \mathfrak{a}^{\prime} \subseteq M$ (e.g. $\left.\mathfrak{a}^{\prime}=\mathfrak{a}+\mathfrak{o}\right)$. Then we have $\nu(\mathfrak{p} ; \mathfrak{a}) \geq \nu\left(\mathfrak{p} ; \mathfrak{a}^{\prime}\right) \geq \alpha$. Hence we get $\nu_{M}(\mathfrak{p})$ $=\inf \{\nu(\mathfrak{p} ; \mathfrak{b}) \mid \mathfrak{b} \in \boldsymbol{F}\}$. Suppose that there exists an ideal $\mathfrak{b} \in \boldsymbol{F}$ such that \mathfrak{p}^{-1} appears among the prime factors of $\mathfrak{G}, \mathfrak{b}=\mathfrak{p}^{-1} \cdot \mathfrak{b}^{\prime}$, say. Then we have $\mathfrak{p}^{-1} \subseteq \mathfrak{b} \subseteq M$, a contradiction. Hence $\nu(\mathfrak{p} ; \mathfrak{b})=0$ for all $\mathfrak{b} \in \boldsymbol{F}$. We have therefore $\nu_{M}(\mathfrak{p})=0$ as desired. Conversely let M be a submodule such that the coordinates of $f(M)$ consists only of 0 and $-\infty$. An ideal \mathfrak{a} is contained in M if and only if both $P_{0}(M) \subseteq P_{0}(\mathfrak{a}) \cup P_{+}(\mathfrak{a})$ and $P_{-\infty}(M) \subseteq P_{0}(\mathfrak{a}) \cup P_{ \pm}(\mathfrak{a})$ hold, where $P_{-\infty}(M)=\left\{\mathfrak{p} \in \mathfrak{P} \mid \nu_{M}(\mathfrak{p})=-\infty\right\}$. In order to show that M is a subring of R it is sufficient to show that $\mathfrak{a b}$ $\subseteq M$ for any ideals \mathfrak{a} and \mathfrak{b} in M. Because, since \mathfrak{o} is regular there is an ideal which is contained in M and contains an arbitrary fixed element of M. Take two non-zero ideals \mathfrak{a} and \mathfrak{b} in M. Then since $f(\mathfrak{a b})=f(\mathfrak{a})+f(\mathfrak{b})$ we can show $P_{0}(M) \subseteq P_{0}(\mathfrak{a b}) \cup P_{+}(\mathfrak{a b})$ and $P_{-\infty}(M)$ $\subseteq P_{0}(\mathfrak{a b}) \cup P_{ \pm}(\mathfrak{a b}) . \quad$ This means $\mathfrak{a b} \subseteq M . \quad M=\mathfrak{o}_{P}, P=P_{0}(M)$, is easy to see. The representation (*) is obtained by using the additive property of f. This completes the proof.

Remark. Let M be a submodule such that $\left|P_{-}(M)\right|$ is finite. Then $\sum \mathfrak{p}^{\nu(p)}=\left(\prod \mathfrak{p}^{-\nu(p)}\right)^{-1}$, and M is the P-component of the ideal

$$
\prod_{p \in P_{+}} \mathfrak{p}^{p(p)} \prod_{p \in P_{-}} \mathfrak{p}^{p(p)} .
$$

Moreover $M=\mathfrak{a}_{P}$ (the P-component of an ideal \mathfrak{a}) if and only if

$$
\mathfrak{a}=\prod_{p \in P_{+}} \mathfrak{p}^{\nu(p)} \prod_{p \in P_{-}} \mathfrak{p}^{\nu(p)} \prod_{p \in Q} \mathfrak{p}^{p},
$$

where Q is a finite subset of $P_{-\infty}(M)$ and ρ is an integer. It is then obvious that a submodule M is a P-component of an ideal if and only if both $P_{-\infty}\left(\mathfrak{o}_{P}\right)=P_{-\infty}(M)$ and $\left|P_{0}\left(\mathfrak{o}_{P}\right)-P_{0}(M)\right|<\infty$ hold.

References

[1] K. Asano: Zur Arithmetik in Schiefringen. I. Osaka Math. J., 1, 98-134 (1949).
[2] K. Asano and K. Murata: Arithmetical ideal theory in semigroups. Journ. Inst. of Polytec., Osaka City Univ., 4, 9-33 (1953).
[3] C. Ayoub: On the submodules of a field. Monatsh. Math., 72, 193-199 (1968).
[4] N. Bourbaki: Algèbre commutative (Chapitre 7). Éléments de Math. XXXI (1965).
[5] L. Fuchs: Partially ordered algebraic systems. International Series of Monographs on Pure and Applied Math., 28 (1963).

