161. On a Theorem of Collingwood

By Shigeo SEgawa
Mathematical Institute, Nagoya University
(Comm. by Kôsaku Yosida, m. J. A., Nov. 12, 1974)

We denote by D the unit disk $|z|<1$ and by Γ its boundary $|z|=1$. The cluster set $C_{D}\left(f, e^{i \theta}\right)$ of a complex-valued function $f(z)$ on D at $e^{i \theta} \in \Gamma$ is the set of values α in the extended plane such that $\lim _{n \rightarrow \infty} f\left(z_{n}\right)$ $=\alpha$ for a sequence $\left\{z_{n}\right\}$ in D convergent to $e^{i \theta}$. Let $H=\{H(\theta)\}_{e^{i \theta \in \Gamma}}$ be a family of subsets $H(\theta)$ of Γ such that

$$
\begin{equation*}
e^{i \theta} \in H^{\prime}(\theta) \tag{1}
\end{equation*}
$$

for each $e^{i \theta} \in \Gamma$, where $H^{\prime}(\theta)$ is the derived set of $H(\theta)$. We define the boundary cluster set $C_{\Gamma H}\left(f, e^{i \theta}\right)$ relative to the family H at $e^{i \theta} \in \Gamma$ by

$$
\begin{equation*}
C_{\Gamma H}\left(f, e^{i \theta}\right)=\bigcap_{\eta>0} M_{\eta}(\theta) \tag{2}
\end{equation*}
$$

where we set
(3)

$$
M_{\eta}(\theta)=\overline{\bigcup_{e^{i \theta^{\prime}} \in H(\theta), 0<\left|\theta^{\prime}-\theta\right|<\eta} C_{D}\left(f, e^{i \theta^{\prime}}\right)} .
$$

Here and hereafter the bar indicates the closure. We stress that no regularity of $f(z)$ such as holomorphy or continuity is postulated. The purpose of this note is to prove the following

Theorem. The boundary cluster set $C_{\Gamma H}\left(f, e^{i \theta}\right)$ coincides with the ordinary cluser set $C_{D}\left(f, e^{i \theta}\right)$ for every $e^{i \theta}$ in Γ except possibly for a set of category I in the Baire sense.

This is originally obtained by Collingwood [1], [2] for a family $H=\{H(\theta)\}_{e^{i \theta} \in \Gamma}$ such that
(4) $\quad H(\theta) \supset\left\{e^{i \theta^{\prime}} ; \theta^{\prime} \in(\theta-\eta, \theta)\right\} \quad\left[\left\{e^{i \theta^{\prime}} \in(\theta, \theta+\eta)\right\}\right.$, resp.]
for an $\eta>0$ for every $e^{i \theta} \in \Gamma$. Clearly (4) implies (1), and our theorem generalizes that of Collingwood.

Proof of Theorem. Suppose that $\mathscr{M}(\theta)=\left\{e^{i \theta} ; C_{\Gamma H}\left(f, e^{i \theta}\right)\right.$ $\left.\neq C_{D}\left(f, e^{i \theta}\right)\right\}$ is of category II. Let $\left\{\varepsilon_{n}\right\}$ be a monotonically decreasing sequence of positive numbers such that $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$. We denote by $C_{\Gamma H}\left(f, e^{i \theta}\right)_{+\varepsilon_{n}}$ the closed set of points whose spherical distances from $C_{\Gamma H}\left(f, e^{i \theta}\right)$ are at most equal to ε_{n}. Let $E_{n}=\left\{e^{i \theta} ; C_{D}\left(f, e^{i \theta}\right)\right.$ $\left.-C_{\Gamma H}\left(f, e^{i \theta}\right)_{+\varepsilon_{n}} \neq \phi\right\}$. Obviously $\mathscr{M}(\theta)=\cup E_{n}$. Hence there exists at least one N such that E_{N} is of category II. Let $\left\{\Delta_{1}, \Delta_{2}, \cdots, \Delta_{m}\right\}$ be a finite triangulation of Riemann-sphere such that each Δ_{μ} has a spherical diameter less than $\varepsilon_{N} / 4$. For each μ, let $E_{N, \mu}=\left\{e^{i \theta} \in E_{N} ;\left\{C_{D}\left(f, e^{i \theta}\right)\right.\right.$ $\left.\left.-C_{\Gamma H}\left(f, e^{i \theta}\right)_{+\sigma_{N}}\right\} \cap \bar{\Delta}_{\mu} \neq \phi\right\}$. Then $E_{N}=\bigcup_{1 \leq \mu \leq m} E_{N, \mu}$ and therefore there exists at least one $M(1 \leq M \leq m)$ such that $E_{N, M}$ is of category II.

Suppose that $E_{N, M}$ is dense on an arc $\left(e^{i \theta 1}, e^{i \theta 2}\right)=\left\{e^{i \theta} ; \theta_{1}<\theta<\theta_{2}\right\}$. Choose an $e^{i \theta 0}$ in $E_{N, M} \cap\left(e^{i \theta 1}, e^{i \theta 2}\right)$. Obviously, $\left[\Delta_{M}, C_{\Gamma H}\left(f, e^{i \theta 0}\right)\right] \geq 3 \varepsilon_{N} / 4$, where $[\cdot, \cdot]$ denotes the spherical distance. Hence we can easily see that there exists a positive number η such that $\left[\Delta_{M}, M_{\eta}\left(\theta_{0}\right)\right] \geq \varepsilon_{N} / 2$, where

$$
M \eta\left(\theta_{0}\right)=\bigcup_{e^{t \theta} \in H\left(\theta_{0}\right),\left|\theta-\theta_{0}\right|<\eta} C_{D}\left(f, e^{i \theta}\right)
$$

Therefore there exist an $e^{i \theta^{\prime}} \in H\left(\theta_{0}\right) \cap\left(e^{i\left(\theta_{0}-\eta\right)}, e^{i\left(\theta_{0}+\eta\right)}\right) \cap\left(e^{i \theta_{1}}, e^{i \theta_{2}}\right)$ and a positive number ρ such that $\left[\Delta_{M}, f(z)\right] \geq \varepsilon_{N} / 3$ for every $z \in D \cap U\left(e^{i \theta^{\prime}}, \rho\right)$, where $U\left(e^{i \theta^{\prime}}, \rho\right)=\left\{\zeta ;\left|\zeta-e^{i \theta^{\prime}}\right|<\rho\right\}$. Hence for every $e^{i \theta} \in \Gamma \cap U\left(e^{i \theta^{\prime}}, \rho\right)$, $\left[\Delta_{M}, C_{D}\left(f, e^{i \theta}\right)\right] \geq \varepsilon_{N} / 3$. On the other hand, since $E_{N, M}$ is dense on $\left(e^{i \theta_{1}}, e^{i \theta_{2}}\right) \cap U\left(e^{i \theta^{\prime}}, \rho\right)$, there exists an $e^{i \theta^{\prime \prime}} \in E_{N, M} \cap\left(e^{i \theta_{1}}, e^{i \theta_{2}}\right) \cap U\left(e^{i \theta^{\prime}}, \rho\right)$. For such $e^{i \theta^{\prime \prime}}, \Delta_{M} \cap C_{D}\left(f, e^{i \theta^{\prime \prime}}\right) \neq \phi$ by the assumption of $E_{N, M}$. This is a contradiction.
Q.E.D.

References

[1] E. F. Collingwood: On sets of maximum indetermination of analytic functions. Math. Zeitcher., 67, 377-396 (1957).
[2] -: Addendum: On sets of maximum indetermination of analytic functions. Math. Zeitcher., 68, 498-499 (1958).

