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160. The Generalized Form of Poincarés Inequality
and its Application to Hypoellipticity
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University of Osaka Prefecture
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Introduction. In this paper we shall derive an inequality of the
form
0.1 lul=CC lul.+¢llguld  for ue C(B,), {>0
as an extended form of Poincaré’s inequality, where B, is the open ball
in R with the center =0 and the radius §,>>0, = is a positive number,
and g(x) is a real valued C~-function which vanishes of finite order /
at the origin. If g is a homogeneous function satisfying |g(x)|=C,|x|
(C,>0) we can easily derive (0.1) by deriving first an inequality |u||
<C(||D; w||+| gu|) and using the homogeneity of g as in Grushin [2].
In the present paper using Hormander’s theorem in [4] we shall prove
that the inequality (0.1) holds even in the case of non-homogeneous
function g(x).

Asgs an application we shall prove the hypoellipticity for the operator
of the form
(0~2) L=0/(X, Dw)'l'g(X)b(X, Y’ Dy))
when a(z, &) satisfies the conditions similar to those in [3] and [7],
b(z, y,n) satisfies the conditions similar to those in the strongly elliptic
case, and g(x) is a non-negative function such that 62°¢(0)=:0 for some
oy, The idea of the proof is found in the proof of the hypoellipticity
of the operator Lu=|x[ £5(x[ w)—d,u+1|x| 45u by Beals [1]. We note
that the operator of the form (0.2) is a generalization of the operators
A(x; D,) + 9(x)*B(x,y; D,) in Kato [56] and (—4,)'+ |z[*(—4)" in
Grushin [2] and Taniguchi [8].

The author wishes to thank Prof. H. Kumano-go for suggesting
these problems and his helpful advice.

§ 1. The generalized form of Poincaré’s inequality. In this
paper we shall use the following notations:

0z,=0/0%;, ji=1,.-,m,
=05 -0 for multi-index a=(ay, - - -, ),
B(Rr)={u e C=(R); sup |ozu(x)|<co for any a},

SRr)={u e B(R"); xz*0tu c B(R:) for any «, §}.
Theorem 1. Let g(x) e C~(B,) be a real valued function which
satisfies for some «a
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1.1 [02g(x)|=ce>0 in B,,,
1.1y 959(0)=0 for |B|<|a,),
where B,, is an open ball in R with the center x=0 and the radius
0,(>0). Then we have for >0
(1.2) (u|=CEC lul.+C= lgul)  for ue C7(B,), £>0.

Remark. In (1.2) setting {=cd™' for small constant ¢ we can
easily prove Poincaré’s inequality

lu|=Collull.  for ue Cy(B,), 0<5<a,

since we have [g(2)|<C,|z|*' for a constant C,.

Proof. As in [4] we use the notations e'*, |v|x, for a vector field
X in 2=B, X R} and 0<s<1 as follows:

e'%: one parameter group of transformations in £ defined by X,

’le’szﬂig t e v~y ,» where L, ,=L*(R% X R}).

First we assume 0<<z<1 and prove the next inequality
.2y CHul=Clull.+Lllould (=0 +]al/2)™)
which is equivalent to (1.2). Moreover we may assume £>C, for some
constant C,>>0 in (1.2), since (1.2) is trivial for 0<¢<C,. We put X,
=g(®)d,, X,=0,,, -+, Xn=0,,, $s=1, =-.-=8,=¢. Then we have for
Y=o,

Y =(039(®)(ad X)*(ad X, - - (ad X,)* X,
((d X)Y=XY—-YX, ay=(ct, * * *» %n))

and we have the next formula by Theorem 4.3 in [4]

.3 [0l SO 35 10l + s+ 101

for v e Cy(B,, x{¥; |y|<1}.
We fix a function y(») € Cy((—1, 1)) such that x>0 and Jx(y)zdy=1, and
put v (x, y) =x(y)e*u(x) for u e Cy(B;). Then we have from (1.3)

1.9 [0clr = Ci( 3] bty 0clma el )-

We calculate each term. To begin with we have

1.5) o JP= j j e u@)f dady = ulP<C, |ulk.
J

Since (e*)(z, y)=v(x +te;¥) (¢,=(0,--+,0,1,0,---,0)) for j=1, we
have

1/2
|V¢lx,,.= sup {t”z’f [x W) | ux + te,) —ulx) | dxdy}
(1.6) 0<t=s1

= sup {t‘z'j |u(x +tey) —u(x) [ dx}l/zg C,l|ull..

0<t=1
Next we have from (et*w ) (x, y) =v (2, ¥+ tg(x))
i || et Fov — v

=t j ,[ | (Y + tg(@))et v+ o @y (x) — y(y)e*ru(x) | dedy
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=I [9(@)u(x) [ dw I U: {x' (v +otg(x))eicv+rio

+ 2y + tg @))ite s dg | dy
=Cilgulf  €=CY.
Then we get
1.7 [Vl 1 =CL |l gul.
Similarly we have
[V [y, = sup t7** || e v —v, |
0<t=s1

=sup ¢~ ” (Y + e v Pu(p) — y(y)eYu(x) f dedy

0<t=1

(18) g”uuz sup t-ZrII {_1_ 'X(y) IZ leic(z/+&)_eilylz
0<ts1 2

|1+ —1@)F <o F dy
=0 ulf—Collul?  €=Cy.
Therefore we have (1.2) from (1.4)-(1.8). For =1 we can prove (1.2)
by interpolation and (1.2) for 0<z<1.
§ 2. Hypoellipticity at the origin. In this section we shall study
a scalar differential operator in R7 X R* of the form
2.1 L(X,Y,D,,D)=a(X,D,)+9(X)b(X,Y,D,).
We say that L is hypoelliptic at the origin if there exists a neighbor-
hood 2 of the origin such that Luec C~(Q’) implies ue C~(£2") for
u e 9'(2) and any open set £’ in Q.
Before the formulation we introduce some notations.
Notations. Let 2(8), u() be C~-functions in R?, R%, respectively,
such that for 0<¢<1
(2.2) A+|&D) =20 =CA+8)D, A+ )" =p=C'A+|9D,
2.3) 852D S CAQ', 0% )| S Corptl)=1=.
1°) S, ={p(, &) e C~(R%,); |0:050(x, &) | < C,,a(8)m Ie1+2181}
(—oo<m<oo, 0<6<1).
Sy =n Sia,s (cf. [3], [6] and [8]).
2°) B (Sr)={a(@,y,7) € C~(RLXR%,); 329705 a(w, v, )]
SCop )™ 11} (— oo <m’ < co0).
3°) For p(x, &) € S7; and q(x, ¥, n) € B,(S™) we define pseudo-differ-
ential operators P=p(X,D,), @=q(X,Y,D,) with symbols ¢(P)(x,&)
=10(90, S)a U(Q)(x, Y, 77): Q(x’ Y, 77) by

Po=(2r)—" j e ip(a, g)(j e'”'%(x)dx)d&,
Pu=(2r)-" f e p(z, g)( f e-ie-tu(, y)dx)ds,

Qu=(2m)~* f evq(x, v, v)(f e~ vz, y)dy)dv,
for v e S(R2) and u e S(RH).
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4°) For P=p(X, D,) € S}, ; we denote the formal adjoint of P by P*
=p* (X, D,), which is defined by
(Pu, v)=(u, P*v) for u, v e S(R).

Conditions. 1) a(z, &) belongs to S7;, (m>0) and satisfies for
large |¢|
(2.4) Re a(x, &) =Coa(5)™ 0<z<1, C,>0),
(2.5) |0:05a(x, &) |Re a(x, &) | C,pa(8)~ 1«1 +218! 0=0<1)

(cf. [3], p. 164 and [7], p. 154).

2) b(x,y, 7 belongs to B,(S7) (m'>0) and there exists by(x, ¥, 1)

€ B,(S™) such that
b(xy Y, 77)_ bo(x’ Y, 77) € _@x(S:‘n'—l)

and for large |7]

(2.6) [o(, Y, ) | = Cop()™ (C;>0)
2.7 Re by(z, v, 9) =0.

3) g(x) belongs to H(R™), g(x)=0 and for some «,
2.8 05°9(0)=~0.

Theorem 2. Under the conditions above the operator (2.1) is
hypoelliptic at the origin.

Lemma. We put p(x, £)=>1/2)(a(x, &) +a*(x, £)). Then p(x, &)
has a fractional power {p;};cr Such that

2.9) {pt €St 1D, 8)|ZCAE™ for large |§] (t=0)

D € S5y |D(2, §)|ZC'AE™ for large |§]  (£<0).
(2.10) P,=I1I (identity operator), P,=P (original operator).
(2.1 [0505D: (2, 8) | (2, E) | S CpA(8)~ 11 +21P! for large |§|.
(2.12) (P, Py,) —Diyst, € Sy, ¥ —p, e S7=.

Proof is carried out by the similar way to that in [7].
Here we introduce three Sobolev spaces.
H, ,={ue SRy} ; 2D,)'w(D,)ue L%}
with the norm |[u|; ,=||2(D)'u(D,)*ulls -
His={ue Uy Hy 55 Py(D,)'u € L}
with the norm
(2.13) lells,s, e ={| Pseells,s + | O(D)u i}
where @(§) is a fixed function of S(R?) such that #(¢) >0 in R? (cf. §4
of [7]).
Ws:'{u € ﬂ},s ygue ﬂ—},“m’}

with the norm [|[u]ll;={|%l},q»+ %2 4,00m 1" (ct. [1]).

Let » be a neighborhood of the origin in R? such that
(2.14) |a2g(x)|=cy>0 on @,
which is guaranteed by (2.8). Then we have

Proposition 1. For se R and 0<t<1 there exists a constant C
such that
(2.15) Nlles2,s4 0002y, p = C || %l]ls for ue Cy(Q)
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where py=armm’|2(ezm+2 |a,)) and 2=wX RE.

Proof. From Theorem 1 and (2.14) we have for t,=(etm
+2|a))/orm
(2.16) ClvIP=Ci(|vlErem+C lgv[P)  for ve CF(w), £>0.
Since we can write I=P{¥P_,+R (R € S;*) from (2.12), we have
lgvIF S Colla/ g v|}=Cxgv, v)

=C{(P_39v, Pyv) + (Egv, v)}

SCHL [ Poygo P+87 [Py P+ L | A(DL) +mgo

+E 2D ).
Noting (2.2) we have from (2.16) and (2.17)
(2.18) v CHIPyw P+ AD ¥ [P+ (| P_ygv [P+ ADo) " "gv )}
We denote for @ used in (2.13)
0]le,p={| P2 + (| D(Do)v [P}~

Then we have as Theorem 4.1 in [7]

2.17)

12D | S Cy vl s [ 2D || S Csllv|l_y,»
and we get from (2.18)
(2.19) CloP=C|vl,»+E lgviEs,p)-

Using this and Friedrichs parts as in [6] with respect to
P (Re a(@, §) +¥(E))' =C((Re alx, ) +¥EN+0  0=i<D
for some (&) e Cy(R?) such that Re a(z, &) +4(£)=0 for all & we can
get for 0<i<1
2.20) 9P olte p=Ce(lv ], p+C 9V, p) for v € Ci(w), £§>0.

Writing (z, 77)2_[ e~ vru(x, y)dy, we have

Jultp =@ [ |G-, DI o .
By putting {=pu(y)*° in (2.20) we have (2.15) as follows:
e RSl LI

é(zﬂ)"“csI#(ﬂ)“{||@”§,p+(;2’* 191y, )dy

=Gy |||l
Here we use the fact that = u(p)™™'.

Proposition 2. For any integer (=0), and real numbers s, s, t,,

there exists a constant C such that
“u“l+},s—lm',1’+”gu“l——},s+m’—lm',P
@21 <C(Lulgr+uln)  for we C3(2).

Proof is omitted.

Using Propositions 1 and 2 we can prove that for any open set 2’
in 2, integer I(=0), real number s, and u € 9'(2), Lu € H}% (£2') implies
ue H% soim(2). Then Theorem 2 is proved. The detailed proof will
be published elsewhere.
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