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187. Denseness of Singular Densities
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(Comm. by Kdsaku YO0SIDA, M. J. A., Dec. 12, 1974)

Consider a 2-form P(z)dxdy on an open Riemann surface R such
that the coefficients P(z) are nonnegative locally Hoélder continuous
functions of local parameters z=x+4y on R. Such a 2-form P(z)dxdy
will be referred to as a density on R. We shall call a density P singular
if any nonnegative C? solution u of the elliptic equation
(1) Au(z) = P(2)u(z) (i.e. d*du(z)=u(z)P(z)dxdy)
on R has the zero infimum, i.e. inf,. . u(2)=0. We denote by D=D(R)
and Dg=Dg(R) the set of densities and singular densities on R, respec-
tively. According to Myrberg [2], (1) always possesses at least one
strictly positive solution for any open Riemann surface E. In con-
nection with the existence of Evans solution, Nakai [5] showed that
Dg+#0 for any open Riemann surface R. The purpose of this note is
to show that Dy is not only nonvoid but also contains sufficiently many
members in the following sense: Dy is dense in D with respect to the
metric

o®, P)=([ |Pc)—P2) dxdy)*

on D, where a*=a/(1+a) for nonnegative numbers and oo*=1.
Namely, we shall prove the following

Theorem. The subspace Dg(R) of singular densities is dense in
the metric space (D(R), p) for any open Riemann surface R.

Proof. We only have to show that for any P e D and any >0,
there exists a @ € Dy such that

(2) [ 1P@—a@)| dwdy<n.

Our proof goes on an analogous way to [5]. Let ({z,}, {U;}, {n;}
(7=1,2, ---) be a system such that {z,} is a sequence of points in E not
accumulating in R, U, are parametric disks on R with centers z; such
that U;NU,=0 (j#k), and {,} is a sequence with ,>0and > 5., 7,=2.
Furthermore we denote by V, the concentric parametric disk |2|<g;
=exp (—4xn/yp) of U; (j=1,2, ...). Let G(z,) be the Green’s function
on S=R— (5., V, for (1). Fix a point z,€ S and set
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(3) ey=Min,c,y, p,%%(;(zo, 0.

Since ¢,>0 (cf. Ité [1]), by Lemma 1 in [5], there exist densities
P,(z)dzdy on R whose supports are contained in V; such that
27

(4) @7 I<e| o[ Fosea|
for every f in C(@V;) and JRP,(z)dxdygm for each j=1,2, . - -, where
P is the continuous function on V such that P7|dV=f and PY is a
solution of (1) on V. Using the above densities P, we define

QR)dxdy=P(z)dxdy+ > 7., P;(z)dxdy
on R. Clearly Q(z)dxdy satisfies the inequality (2). We have to prove
that Q@ € Ds. Let u(2) be a nonnegative solution of Au(z)=Q(z)u(z) on
R. As in [5] take a regular exhaustion {R,}5., of R such that z,¢ R,,
R,D\..V, and R—R,D\J.,.1 V;. Consider a boundary function
Un,x M<EK) for the region S,=R;—\J%., V, such that u,,=u on B,
=J?.,0V, and u,,;=0 on 8S,—B,. Since Q(z)dxdy=P(z)dxdy on S,
w(z) is a nonnegative solution of (1) on S;. Therefore the maximum
principle for subharmonic functions yields
(5) P (20) <ulzo) n=12,...; k=n+1,n+2,.-).
Let G,(2,8) be the Green’s function on S, for (1). Then by the Green
formula

(6) P;f’;,k(zo):_l_ 2= I u(©) ——a-Gk(z0, O)ds,.
2r vy on ¢

On letting k—oo in (6), we deduce by (3) and (5) that

D =18 Lt u(p;6°°)df < 2ru(z,)

for every n. On the other hand, since u(z)=(P,);(z) on dV,; and Q>P;
on V,, the comparison principle yields
we)<(PLz)  (G=1,2,--),
By the above inequality with (4), (7), and #>0, we have that lim,_., u(z,)
=0, i.e. inf, u=0. Thus we conclude that @ € Dyg. Q.E.D.
Remark. Since the density 0 belongs to the p-closure of Dy(R),
we in particular have
(8) Dgs(R) N LA(R)+0
which is the full content of Nakai [5]. We remark that L'(E) cannot
be replaced by L?(R) (1<p< o) even for the simplest R={z|<1}.
First observe that if there exist a constant >0 and a compact
subset X of a hyperbolic Riemann surface R which is the closure of a
regular subregion of R such that

(9) jWH<z, OPQdedy<2—5  (C=E+ip

for any 2 ¢ W=R—X, where H(z, ) is the harmonic Green’s function
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on R, then P ¢ Dg. In fact, the reduction operator T,: PB(W)—HB(W)
is surjective and then we have

(10) ep(z):l—ij Hy(z, Den(OP©Odedy
2 Jw

where ¢p is the P-unit on W and Hy(z,{) is the harmonic Green’s
function on W (¢f. Nakai [3], [4]). By (9), (10), H, (¢, ) <H(z,{), and
0<ep<1, we deduce that ex(2) >d/(2xn) for z¢ W, i.e. inf,, e,>0. By
the remark in no. 3 in [5], we conclude that (9) implies P ¢ Ds. We
next show that if the density Pe L?(R) (1<p<oo), then P ¢ Dg(R),
where R={z;|2|<1}, i.e. Dg(R)NLP(R)=0 (1<p<oo). Let H(z,0
be the harmonic Green’s function on R and set R,={z; |2|<1—1/n}.
Clearly

an lim,..[ H@OWd=0 q=p/@—1)

uniformly with respect to z. On the other hand, by Hélder’s inequality,
we have

@ [ HeoPOw#d<([,  He o) ([, P@razag)e.

In view of Pe L?(R) and (11), the left hand side of (12) satisfies the
condition (9) for sufficiently large n. Thus we conclude that P ¢ Dg(R).
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