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186. On the Broadwell’s Model for a Simple
Discrete Velocity Gas

By Takaaki NISHIDA*) and Masayasu MIMURA**)

(Comm. by K6saku Y0SID_, M. Z. -., Dec. 12, 1974)

In this paper we discuss the question of the global existence of
non-negative solutions satisfying the semilinear hyperbolic system of
equations

ut +u.=(w2- uv) (1-1)
vt--v=e(w--uv), (t, x) e (0, + co) R (1-2)

w 2(w-uv) (1-3)
with the non-negative initial data

u(O, x) Uo(X)
v(O, x)=Vo(X), x e R ( 2 )
w(O, x) Wo(X).

This system was proposed by J. E. Broadwell as one of the simplest
models of a dilute gas whose molecules move in the discrete state.
In this model, u and v are the numbers of molecules per unit volume
with the velocities (1, 0, 0) and (-1, 0, 0) respectively, w is that with
the velocity (0, + 1, 0) or (0, 0, +_ 1) and the gas motion is considered
as one dimensional in x and homogeneous in y and z. A set (u, v, w)
interacts only through binary collision with other molecules. As the
collision coefficient is found to be proportional to the mutual-collision
cross section, it may be taken as sufficiently small. A more detailed
physical description of this model can be ound in [1] and [3]. We
remark that this approach gives the approximate solution of the
Boltzmann equation in the meaning of restricting the molecular
velocities to a finite set.

The local existence and uniqueness of the smooth or C-solution
for the Cauchy problem (1) and (2) ca.n be obtained as a classical
result (see [2]). From now on, we denote the problem (1) and (2) by
(C. Pr.).

As for the system (1), there exist the following relations which
play an essential role to obtain the global solution of (C. Pr.); the con-
servation o mass"

(u+ v + w) + (u-v) 0 3 )
the conservation of momentum"
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(u-- v) + (u+ v) 0 ( 4 )
H-theorem"

(u log u+ v log v +w log w) / (u log u-- v log v)
(5)(w2- uv) log (w2/uv)

_
O.

We examine some qualitative properties of the solution of (C. Pr.)
in preparation for the proof of the global existence theorem. Through-
out this paper, we suppose the existence of a C-local solution of (C. Pr.).

Lemma 1. If the initial datum (Uo(X), Vo(X), Wo(X)) is non-negative
(resp. positive), then the solution of (C. Pr.) (u(t, x), v(t, x), w(t, x)) is
also non-negative (resp. positive).

Proof. It is easy to.prove this lemma, so we omit it.
Lemma 2. Define f(z, c) as

f(z, c) z. log (z/c) z + c ( 6 )
for any positive constant c. If (C.. Pr.) has a positive solution
(u(t, x), v(t, x), w(t, x)), then it follows that

{f(u(t, x), u) + f(v(t, x), v) + f(w(t, x), w)}t
+ {f(u(t, x), u)--f(v(t, x), v)} ( 7 )
-(w--uv) log (w2/uv)(t, x),

where (u, v, w) is a positive equilibrium state of the system (l), i.e.,
(w)=uv.
(5).

and

Proof. The proof can be given as a direct consequence of (3) and

Suppose that
0

_
Uo(X), Vo(X), Wo(X)

_
Ko + c

Lemma 3.

(8)

{Uo(X)+Vo(X)+Wo(X)}dx=Lo< + c,. ( 9 )

where Ko and Lo are both positive constants. If l/Lo, then the
solution of (C. Pr.) has the following a priori estimate;

O<_u(t, x), v(t, x), w(t, x)<_ 2K0 (10)
1--L0

Proof. We first note that the ollowing property is proved;
If O<_u(t,x),v(t,x)_K for any constant K with Wo(X)<_K, then

O_w(t, x)_K by (1-3). On integrating (1-1) for C-solutions along
the characteristic line x--t=const., and (1-2) along x+t=const, re-
spectively, we have

u(t, x) =Uo(X- t) + .Io (w-uv)(r, x- (t- r))d (11-1)

and

v(t,x)=Vo(X+t)+ fto (w-uv)(r,x+(t-r))dr. (11-2)

Addition of (11-1) to (11-2) gives
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u(t, x) + v(t, x)
(2)

--Uo(X t)+Vo(X+ t)+_ (w--uv)(t--[x--[, )d.
Now supposing that

0

_
u(t, x), v(t, x)

_
K, (13)

then, by use of the non-negativity oi (u(t, x), v(t, x)) and the inequality
(8), (12) is, rom the above property, estimated by

O<u(t, x)+v(t, x)<2Ko+K w(t-[x ],)d.
dx-t

Here we estimate the second term of the right hand side of (14).
integrate (3) over the triangle B.

(14)

We

l%,)

0, c-5 O, : 5)

Then we find that (3) gves
/

w(t-lx-l, )d+ . (t+-,)d

dx

=-/ (o+o+ wo)()d.

hus, as an immediate result of (1), we obtain the estimate of w(t, )
such as

/w(t--lx--_ )d<Lo. (16)

Substituting (16) into (14), we get
0_ u(t, x) + v(t, x) _2K0+ KLo. (17)

In this case, in order that (17) is consistent with (13), K must satisfy

2K0+KLo
_
K.

Hence, it is sufficient that and K satisfy

eL041 and K-2K__0. (18)
1--L0

Thus the proof is completed.
Lemma 4. Suppose that

0

_
Uo(X), Vo(X), Wo(X)

_
Ko + c

and

[= {f(Uo(X), u) + f(Vo(X), v) + f(Wo(X), w)}dx Eo< +
d--

(19)

(20)
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where and Eo are both positive constants and 3_u, v, wKo. If
el/2Eo, then the solution of (C. Pr.)has the following a priori
estimate;

O<u(t, x), v(t, x), w(t, x)_
1--2Eo

.Ko.
Proof. The procedure of the proof is almost similar to that o

Lemma 3. We first note

O<u(t,x)+v(t,x)<_2Ko+s w(t-lx-l,)d.
-t

Supposing that
Ou(t, x), v(t, x)gK or t e [0, t], (21)

then it follows that
0 u(t, x) + v(t, x)

_2Ko+ 2et(w)2 + s(gl + w) Iw(t--lx--], )--wl d, t e [0, tl].
-t

Noting that
]w(t, x)--wl_f(w(t, x), w)+ w(e--2)

and

:tt f(w(t-lx-], ), w)d_Eo,

then we can see that
Ou(t,x)+v(t,x)<2Ko+2t(w)+(K/w){Eo+2W(e--2)t}. (22)

In order that (22) is consistent with (21), the following inequality must
hold;

2Ko+ 2t(w) +(K+ w){Eo+ 2w(e 2)t}_K. (23)
Hence, if , t and K satisfy

Et 2E0 1
2(e--2)w

and

2Ko+ wE +2wEo
K= e--2

1--2sEo
then we can see

0< u(t, x), v(t, x), w(t, x)<K,, (, x) e [0, tl] x R.
Note that

4 K0K <_
1 2E0

and that tl depends on w and E only. Repeating the above procedure
a finite number of times, then we have

Ou(t, x), v(t, x), w(t, x)_
1--2Eo

.Ko
for any t e [0, + ) and then the result follows.

We next treat the case of the periodic initial data. Then we have
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the similar a priori estimate as follows;
Lemma 5. Suppose that

(Uo(X), Vo(X), Wo(X)) (24)
is a periodic function with a period 2 and tha$ (8) and

(25)

or suppose that (19) and

min {f(Uo(X), u) + f(Vo(X), v) + f(Wo(X), w)}dx=E0< + c. (26)
(wO)=uOvO
uo,vo,wOKo
Then there exists o such that for Lo_o or eEo<_o the solution of (C. Pr.)
is estimated by

O<_u(t,x),v(t,x),w(t,x)CKo, (t,x)e [0, + c) xR,
where C and K are positive constants depending on Ko, Lo, Eo and o.

Proof. We can prove this lemma by using the similar procedure
of Lemmas 3 and 4, noting that

or

w)}dx-So,
or any t e [0, / c).

Using Lemmas 1-5, from a standard continuation of the local
solution argument, we conclude’

Theorem. Let the initial data ((8), (9), ((19), (20), ((8), (24), (25)}
or {(19), (24), (26)} oe given. Then there exists o such that for
in {(8), (9)} and ((8), (24), (25)} and Eo<_o in ((19), (20)} and ((19), (24), (26)
the Cauchy problem (1) and (2) has a non-negative global solution in
(t,x)e [0, + )xR.

Remark 1o Lemma 5 assures the existence of a global solution of
the mixed problem with the perfect reflective walls in the domain
[0, + c) [0, 1], which has the non-negative initial conditions

u(O, x)=uo(x)
v(O, x)=vo(x), x e [0,1]
w(O, x) Wo(X)

and the boundary conditions
u(t, x)---v(t, x.), x---O and x-1, t e [0, /

where (Uo(X), Vo(X)) is supposed to satisfy the compatibility conditions,
that is,

u0(0) =vo(O)
u0(1) v0(1)

{v0(x)} I- -{u0(x)} I--.
Remark 2. We can show a new finite difference scheme corres-
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ponding to (C. Pr.), the maximum norm stability of which is not
influenced by the nonlinear term as follows;

u=u(nzlt, kzlx), v=v(nzlt, kzlx), w=w(nzlt, kzlt)

A(zlt, n, k)= 1 + lt(u_+v/+2w + 2K), 2K0

u/=u_+zlt{(w)-u_v/}/A(zlt, n, k)
v+-----v+ -- zlt{(w)--U_lV+}/A(ztt, n, k)
w/=w-2zlt{(w)-u_v/}/A(zlt, n, k),

where /t and /x are mesh sizes in the t and x directions respectively.
This scheme can be applied to the Cauchy problem (1) and {(8), (9)} or
(1) and {(8), (24), (25)} and has the same a priori estimate as that of
(C. Pr.).
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