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24. The Local Maximum Modulus Principle
for Function Spaces

By Yukio HIRASHITA® and Junzo WADA**
(Comm. by Kinjirdé KUNUGI, M. J. A., Feb. 12, 1975)

The local maximum modulus principle for function algebras due
to H. Rossi [5] is well-known. The purpose of this paper is to consider
the principle for function spaces, more correctly speaking, for function
systems. In §1, for any function system &, we define the LMM(F)-
boundary which plays the same réle as the Shilov boundary in the
Rossi’s principle. In §§2 and 3, properties of the LMM(S)-boundary
and relations between the Rossi’s principle and ours are discussed.

§ 1. The LMM.boundary. Let X be a compact Hausdorff space.
For any subset S in X, S denotes the topological boundary of S, i.e.,
S=.8\S?, where S and S’ are the closure and the interior of S in X
respectively.

Let & be a family of complex-valued bounded continuous functions
defined on subsets of X. We denote the domain of f by D(f) (f € &F).
F is said to be a fumction system on X if &F hag the following
properties:

Q) If f,9e ¥ and «, p are complex numbers, then « f + g (defined
on D(f)N D(g)) belongs to <.

Q) Fx={feF:D(f)=X} separates points of X and contains
constant functions.

Let & be a function system on X. We will say that a subset E of
X satisfies the LMM(F)-principle if || fllz=|f s for any open subset U
in X with UNE=¢ and for any fe< with D(f)DU, where ||f|»
=8UP,cp | f(2)] for any P (| f|l,=0 for the empty set ).

We shall first show that there exists the smallest one F;, among
non-void® closed subsets which satisfy the LMM(SF)-principle. Such
set F, is called the LMM(F)-boundary and we write Fy=LMM(F).

Theorem 1.1. For any function system <F, there exists the
LMM(F)-boundary.

Proof. Let P={F},,” be the family of all (non-void) closed sub-
sets in X which satisfy the LMM(P)-principle. We define a partial
order > in A as follows: 2>y if and only if F,DF,. It is not hard to
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1) The empty set ¢ does not satisfy the LMM(SF)-principle.
2) & is non-void, because P> X.
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see that any totally ordered subset of 4 has a lower bound. Hence
Zorn’s lemma guarantees that & has a minimal one F,. To complete
our proof we verify that F, is the smallest one of . The proof is
similar to Bear’s [1]. Let a closed subset B have the LM M (S%)-principle.
Then we shall show that F,CB. Suppose that F,& B, then there exist
%, € F\y\\B, and a non-void open subset V (s x,) with VN B=¢. Since
Fy separates points in X, the ordinary topology on X coincides with
the weak topology on X with respect to 5. From this we can assume
that V is of the form {x e X:|fi(x)—fi(x,)|<e}, where f,e Fy (1=1,2,
--+,n) and e>0. By setting g,=1,—fi(x,) (€ Fx), wehave V={rxe X:
l9:(2)|<e, i=1,2, -+, n}. If T=F,\V, by the minimality of F,, T fails
to satisfy the principle. Hence there exist an open subset U and
fe%F such that UNT=¢, D(f)DOU and | f|z<|fllz- We can here
choose a sufficiently large number m such that g=mj satisfies the
following :
l9:llo+119ally+ -« -+ gullo+ 19 lle <9 lo-

Now let a« be any complex number with [¢|=1. Then for any

xeUNV and any ke{1,2,..-,n}
9@+ agx(@)|=]9@) [+]9:(@)[<|| 9|y +e-
If xe U, then

19(@) +ag:(@) [=1191l7 +119xlo <[ gl
If we set W=U\F,, then WCUU{UNV} and D(g+ag,) D W, and by
two inequalities above,

l9+agulw <l|9lly+e.

Since WN Fy=¢, by the LMM(&F)-principle,

19+ agsllw =119+ aglli <[ glly+e.
It follows that ||g+ag:lly<|gly+e because U=UUU=UU(U\F,)
UUNFY)=UUWUUNF)CUUWUUNY).

We here take any te M,={x e U:|g(x)|=| 9|y}, then there exists

an « (a¢|=1) such that
[9®) +ag:@) |=]9@)|+]9:@)-
Hence we have
[91ly +19:@)|=]9@®|+]9:@®) |=]9(®) + ag:(D)|
=l9+aglly<llglly+e.
It implies that |g,(¢)|<e (k=1,2, ---,n), and so M,CV. Since M,CU,
M,cUNV=S. Itfollowsthat|g|;<|g|lsand SNBCVNB=¢. This
shows that B fails to satisfy the LMM(SF)-principle. It concludes that
F, is the LMM(S)-boundary.

§2. The LMM(%).-boundary and the Shilov boundary. A linear
subspace A of C(X) is said to be a function space on X if A separates
points of X and contains constant functions.

Let A be a function space on X. A function f defined on S (CX)



No. 1] Local Maximum Modulus Principle 111

is said to be (A-) holomorphic on S if for any x¢ S there exists a
neighborhood V of x in X such that f can be approximated uniformly
on SNV by functions in A. We denote the set of all holomorphic
functions on S by 4 .(S). Let 4(/(S) denote the set of all functions on
S which can be approximated uniformly on S by functions of A.

For a function space A on X, the following three are function
systems on X: (1) F(A)=A4, ) F(HD=Uscx Hi(S) and (3) F(H)
= Us:x I 4(S).

Theorem 2.1. 3, C LMM(F(A)) = LMM(F (¥2)C LMM(F (4 .)),
where 9, denotes the Shilov boundary for A.

Proof. It suffices to prove only that 6,CLMM(¥(A)). We set
U=X\LMM(Z(A)). Then for any fecA, ||flz=|fly. Since U
CLMM(F(A)), wehave || fllx=max {| flxw, | f o} = llcamgay- This
shows 0, LMM(F (4)).

A similar result as Corollary 2.8 of Rickart [4] can be obtained as
follows.

Theorem 2.2. If UNLMM(F(H4))=¢ for a non-void open subset
U in X and h e 9(,(U), then there exists 6 € U such that |h|y=|h|ynr
for any open neighborhood V of 4.

§ 3. Singular points. Let A be a function space on X and ¢: X
—A* denote the canonical mapping from X to the dual space A* with
weak*-topology. We can identify X and ¢(X) in the usual sense:

@), fFH>=f(x) for xe X, feA. For SCX, go@) denotes the (w*-)
AN
closed convex hull of ¢(S). We see that ¢(X) equals the state space

{Le A*: LQ)=1=||L|} (cf. [3]). We write S in the place of ;o/(TS'). A
point x € X is said to be singular if there exists an open neighborhood
V of z in X such that # c ex V, where ex V denotes the set of all ex-
treme points of V. We denote by S, the set of all singular points.
Theorem 3.1. LMM(F (A)) is equal to the closure S, of S.
Proof. (1) If LMM(F(A)) & S,, then S, fails to have the
LMM(F(A))-principle. Hence there are an open subset Uandan fe 4
such that UNS,=¢ and I 1l <Il.f o Since f can be cons1dered as a
continuous affine function on U(C A*), there exists Z, € ex U such that
|F@)|=Ifllg=Illy. Sincex,e U (cf. [3]) and || fll5<||f|ls, we have z,
€U, and sox,e U. Itimplies x, e S,, which contradicts that UNS,=4.
@) If S,&LMM(F(A)), we choose x,e S,\LMM(F(A)). Then
there exists an open subset U such that Usa, and ex U 52, Let
V=U\LMM(¥(A)), then V¢ and VNLMM(F(A))=¢. We can here
show that VcF=UU {Uﬂ LMM(F(A))} and F 5 2, Now suppose that

€ V then 2, ¢ VC:FC o=0. S.mcex0 e ex U, we have xo e ex Fand so
z,e F. This contradiction shows z, & V Since z, € ex U there exists
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an f e A such that || f2<| f(x,)| ([8]). From this,
1=,z <|f@)= Sl
This is a contradiction, because VN LMM(F (A))=4¢.

When S,=4,, we have

Theorem 3.2. If S,=3d,, then d,=LMM(F (4,)).

Proof. Since 0,C LMM(F(4(,)) by Theorem 2.1, we have to show
only that 6,DLMM(F(4(,)). For any open subset U in X with UNad,
=¢ and for any h ¢ 9(,(U), B denotes the function space generated by
{A|U,r}. Assume that UNdyz3¢, where 5, is the Choquet boundary
for B. We choose x,€ UNJz. Then for any open subset V s x,, there
exists f e B such that || f|lz,<|f(x)| Since & is holomorphic, % is
approximated uniformly by functions in A on some open subset W(U
DWDOWaw,). Hence | flpw<|f(x)| for some fe B. It follows that
SIW e W) and || flli < f llovw <|f @) ||| fllw. Since WNa,=¢ and
04=S,=LMM(F (9()) by Theorems 2.1 and 3.1, this is a contradiction.
This shows UNdz=g, that is, 6,CU. It implies that ||h|,=|h|ds
S hlz=Zlk)ly, and so 0, satisfies the LMM(F (Y ,)-principle. Thus
the theorem is proved.

Now, let x,€ S,. Then we see that there exists an open subset
W(2 x,) in X which has the following property : for any open neighbor-
hood U of x, with UCW, there is an f e A such that UD{x e W: f(x)
=||fllw}. By this fact and the local peak set theorem ([5] or [2], p. 91),
the Rossi’s principle can be written as follows.

Theorem 3.3. Let A be a function algebra on the maximal ideal
space M. Then d,=8,.
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