34. Unipotent Elements and Characters of Finite Chevalley Groups

By Noriaki KAWANAKA Department of Mathematics, Osaka University

(Comm. by Kenjiro SHODA, M. J. A., March 12, 1975)

Let \mathfrak{G} be a connected semisimple linear algebraic group defined over an algebraically closed field K of characteristic p > 0, and σ a surjective endomorphism of \mathfrak{G} such that the group \mathfrak{G}_{σ} of fixed points is finite. A finite group $G=\mathfrak{G}_{\sigma}$ obtained in this manner is called a finite Chevalley group. The purpose of this note is to announce some results concerning unipotent elements and (complex) characters of a finite Chevalley group $G=\mathfrak{G}_{\sigma}$. The proof is given in the author's forthcoming paper [8]. After the paper [8] was submitted to Osaka Journal of Mathematics, the author received two preprints [9] and [10], in which Theorems II, IV and V below are proved independently.

1. Let (G, B, N, S) be a Tits system (or BN-pair) associated to a finite Chevalley group G. We denote by W its Weyl group. Let G^1 be the set of unipotent elements (or *p*-elements) of G, and U the *p*-Sylow subgroup of G contained in B. For a finite set A, |A| denotes the number of its elements.

Theorem I. Let w be an arbitrary element of W, and w_s the element of W of maximal length. Then the number of unipotent elements of G contained in the double coset BwB is $|BwB \cap w_sUw_s^{-1}| |U|$.

Corollary. $|G^1| = |U|^2$.

Remarks. (a) In [8], we will prove a formula for the number of unipotent elements contained in $BwB \cap P$, where P is an arbitrary parabolic subgroup of G. Theorem I above is a special case of this formula.

(b) The above corollary is originally proved by R. Steinberg [7].

2. An element x of \mathfrak{G} is called regular if $\dim Z_{\mathfrak{G}}(x) = \operatorname{rank} \mathfrak{G}$, where $Z_{\mathfrak{G}}(x)$ is the centralizer of x in \mathfrak{G} . In [6], Steinberg proved the existence of regular unipotent elements of \mathfrak{G} . For example, if $\mathfrak{G}=SL_n$, a unipotent element of \mathfrak{G} is regular if and only if its Jordan normal form consists of a single block. Below, we call an element of $G=\mathfrak{G}_{\mathfrak{G}}$ regular if it is regular as an element of \mathfrak{G} .

Theorem II. Assume that the characteristic p is good (see [1; Part E]) for \mathfrak{G} . Let g be an arbitrary element of $G = \mathfrak{G}_{\sigma}$, and C a regular unipotent conjugacy class of G. Then the number $|Bg \cap C|$ depends neither on g nor C. No. 3]

3. For a subgroup H of G, 1_H denotes the trivial character of H. If θ is a character of H, $i[\theta|H\rightarrow G]$ denotes the character of G induced from θ . Let P be a parabolic subgroup of G. Since P is a finite group with a BN-pair, there is an irreducible character ξ_P of P called the Steinberg character (see [2]).

Theorem III. Let P and ξ_P be as above. Let χ be an irreducible character of G contained in $i[1_B | B \rightarrow G]$. Then

 $\sum_{u \in G^1} \chi(u) i[1_P | P \to G](u) = \sum_{u \in G^1} \chi(u) i[\xi_P | P \to G](u),$ where $\hat{\chi}$ is the "dual character" ([5]) of χ defined using Goldman's involutory automorphism ([4]) of the Hecke algebra $H_c(G, B)$.

Corollary. $\sum_{u \in G^1} \chi(u) = |U|\hat{\chi}(1).$

4. Theorem IV. Assume that \mathfrak{G} is adjoint and p is good for \mathfrak{G} . Let χ be an irreducible cuspidal character of $G = \mathfrak{G}_{\sigma}$, and u a regular unipotent element of G. Then $\chi(u) = \pm 1$ if χ is contained in the character induced from a linear character of U in "general position" (in the sense of Gel'fand and Graev [3]), and $\chi(u) = 0$ otherwise.

5. Theorem V. Assume that p is good for \mathfrak{G} . Let χ be an irreducible character of $G = \mathfrak{G}_{\sigma}$ contained in $i[1_B | B \to G]$. Let u be a regular unipotent element of G. Then

$$\chi(u) = \begin{cases} 1 & \text{if } \chi = \mathbf{1}_G, \\ 0 & \text{if } \chi \neq \mathbf{1}_G. \end{cases}$$

Using an elementary lemma, Theorem II and Theorem V can be translated into each other. The author does not know whether these two theorems hold in any characteristic p>0 or not. But, at least, the following weaker forms of II and V hold without restriction on p>0.

Theorem II'. The number of regular unipotent elements contained in each coset $Bg (g \in G)$ does not depend on g.

Theorem V'. Let χ be as in Theorem V, and G_r^1 the set of regular unipotent elements of G. Then

$$\sum_{u \in G_r^1} \chi(u) = \begin{cases} |G_r^1| & \text{if } \chi = \mathbf{1}_G, \\ 0 & \text{if } \chi \neq \mathbf{1}_G. \end{cases}$$

References

- A. Borel et al.: Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics 131. Springer, Berlin-Heidelberg-New York (1970).
- [2] C. W. Curtis: The Steinberg character of a finite group with a (B, N)-pair. J. Algebra, 4, 433-441 (1966).
- [3] I. M. Gel'fand and M. I. Graev: Construction of irreducible representations of simple algebraic groups over a finite field. Soviet Math. Dokl., 3, 1646– 1649 (1962).
- [4] N. Iwahori: On the structure of the Hecke ring of a Chevalley group over

N. KAWANAKA

a finite field. J. Faculty of Science Tokyo University, 10 (part 2), 215-236 (1964).

- [5] R. Kilmoyer: Some irreducible complex representations of a finite group with a BN-pair. Ph.D. dissertation, M. I. T. (1969).
- [6] R. Steinberg: Regular elements of semisimple algebraic groups. Inst. Hautes Études Sci. Publ. Math., 25, 49-80 (1965).
- [7] ——: Endomorphisms of Linear Algebraic Groups. Memoirs of the Amer. Math. Soc., 80 (1968).
- [8] N. Kawanaka: Unipotent elements and characters of finite Chevalley groups (to appear in Osaka Journal of Mathematics).
- [9] J. A. Green and G. I. Lehrer: On the principal series characters of Chevalley groups and twisted types (preprint).
- [10] G. I. Lehrer: Adjoint groups, regular unipotent elements and discrete series characters (preprint).