53. On a Characterization of L²-well Posed Mixed Problems for Hyperbolic Equations of Second Order

By Rentaro AGEMI

Department of Mathematics, Hokkaido University (Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1975)

§1. Introduction and results. Let Ω be a domain in an *n*dimensional euclidean space \mathbb{R}^n with smooth boundary $\partial \Omega$. Let P be a *t*-strictly hyperbolic operator of second order defined in the cylinder $\mathbb{R}^1 \times \overline{\Omega}$ and B a boundary operator of first order defined on $\mathbb{R}^1 \times \partial \Omega$. Furthermore we assume that the boundary $\partial \Omega$ is non-characteristic for P and B and the coefficients of P and B are smooth and constant outside a compact set of $\mathbb{R}^1 \times \overline{\Omega}$. We then consider the following mixed problem (P, B):

$P(t, x; D_t, D_x)u(t, x) = f(t, x)$	$(t, x) \in R^1 \times \Omega t \ge 0,$
$B(t, x; D_t, D_x)u(t, x) = g(t, x)$	$(t, x) \in R^1 imes \partial \Omega t \ge 0,$
$D_t^j u(0, x) = h_j(x)$	$(j=0,1) x \in \Omega.$

Here $D_t = -i(\partial/\partial t)$, $D_k = -i(\partial/\partial x_k)$ $(k=1, \dots, n)$ and $D_x = (D_1, \dots, D_n)$.

The aim of this paper is to show the following

Theorem. A mixed problem (P, B) is L^2 -well posed if and only if every constant coefficients problem frozen the coefficients at a boundary point is L^2 -well posed.

For the L^2 -well posedness of mixed problems see [3].

The "only if" part of Theorem is a special case of [2], Theorem 1 which is proved by using the results in [4], [6]. When the coefficients of B are real valued, the author characterized, using the method in [3], L^2 -well posed mixed problems with constant coefficients by the inequalities among the coefficients and proved the "if" part of Theorem by energy method ([1]). When the coefficients of B are complex valued, a characterization of L^2 -well posed mixed problems with constant coefficients is obtained in the same direction as real case ([8]). In general, a mixed problem is L^2 -well posed whenever Lopatinski determinant does not vanish ([5], [10]). Under the assumption of L^2 -well posedness, Lopatinski determinant does not vanish in the interior of the most inner normal cone (11) and also does not vanish for Im $\tau < 0$ where τ is the covariable of t ([4]). When Lopatinski determinant vanishes only on the real points where the roots λ are simple, a mixed problem is L^2 -well posed in the case of second order ([2], [9]). Here λ is a root of characteristic polynomial with respect to the covariable of normal direction to $\partial \Omega$. Thus the "if" part of theorem is proved if a R. AGEMI

•

priori L^2 -estimate holds in a neighbourhood of a real point such that λ is double. In this paper we shall construct a symmetrizer near such a point using the considerations (§ 2) in [5], [9] and the results (§ 3, Lemma 1) in [8].

§ 2. Preliminaries. For the sake of simplicity of description we shall prove Theorem in the case when P is d'Alembertian and Ω is the half space $R_+^n = \{x \in R^n; x = (x', x_n), x_n > 0\}$. However, our argument is applicable to a general case. We shall consider a problem (P, B):

$$Pu = \left(-D_t^2 + \sum_{j=1}^n D_j^2\right) u = f \qquad \text{in } R_+^{n+1},$$

$$Bu = \left(D_n - \sum_{j=1}^{n-1} b_j(t, x') D_j - c(t, x') D_t\right) u = g \qquad \text{on } R^n.$$

In order to reduce our problem (P, B) to one for 2×2 system of pseudodifferential operator of first order, put

$$U = {}^{t}(u_1, u_2) = {}^{t}(\Lambda u, D_n u) \qquad \text{for } u \in C_0^{\infty}(\overline{R_+^{n+1}}),$$

where

$$\begin{aligned} \Lambda u &= (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i(\tau t + \sigma x')} \Lambda(\tau, \sigma) \hat{u}(\tau, \sigma, x_n) d\xi d\sigma, \\ \hat{u} &= \int_{\mathbb{R}^n} e^{-i(\tau t + \sigma x')} u(t, x', x_n) dt dx', \\ \Lambda(\tau, \sigma) &= (|\tau|^2 + |\sigma|^2)^{1/2}, \quad \tau = \xi - i\gamma(\gamma \ge 0), \quad \sigma \in \mathbb{R}^{n-1}. \end{aligned}$$

Then our problem becomes

$$D_n U - M \Lambda U = {}^t(0, f) = F \qquad \text{in } R^{n+1}_+,$$

$$u_2 - s u_1 = g \qquad \text{on } R^n.$$

Here the symbols of pseudo-differential operators M, s with parameters γ and x_n are as follows:

We shall construct a symmetrizer Q in the form ([5]):

(2)
$$Q(t, x, \xi', \sigma', \gamma) = \begin{pmatrix} d_0 & d_1 \\ d_1 & d_2 \end{pmatrix} + i\gamma' \begin{pmatrix} 0 & f \\ -f & 0 \end{pmatrix},$$

where a positive constant f and the real symbols $d_j(t, x, \xi', \sigma')$ (j=0, 1, 2) of order zero are determined in §3. The integration by part gives

2 Im $(D_n U - M \Lambda U, QU)_{0,r}$

$$= \langle U, QU \rangle_{0,\tau} + \operatorname{Im} ((*MQ - QM)U, U)_{0,\tau} + (\text{lower order term}),$$

where

If

$$(u, v)_{0,r} = (e^{-rt}u, e^{-rt}v)_{L^2(\mathbb{R}^{n+1}_+)}$$
 and $\langle u, v \rangle_{0,r} = (e^{-rt}u, e^{-rt}v)_{L^2(\mathbb{R}^n)}.$

(3)
$$d_0 = d_2(\xi'^2 - |\sigma'|^2),$$

then it follows from (1) and (2) that

No. 4]

$$(4) \qquad (*MQ - QM)(t, x, \xi', \sigma', \gamma') = 2i\gamma' \begin{pmatrix} 2d_1\xi' - f(\xi' - |\sigma'|^2) & d_2\xi' \\ d_2\xi' & f \end{pmatrix} + 0(\gamma'^2).$$

On the other hand, using boundary condition $u_2 = su_1 + g$ we get (5) $\langle U, QU \rangle_{0,r}$

 $= \langle (d_0 + 2d_1 \operatorname{Re} s + d_2 | s|^2 + 2\gamma' f \operatorname{Im} s) u_1, u_1 \rangle_{0,\gamma} + R(U, g),$

where $|R(U,g)| \leq C(\langle \Lambda^{-1/2}U \rangle_{0,\tau}^2 + \langle \Lambda^{1/2}g \rangle_{0,\tau}^2)$. Using (3) the symbol of pseudo-differential operator appeared in the first term of the right hand side in (5) can be written by the form $K + \gamma' H$, where $H(t, x', \xi', \sigma', \gamma)$ is of order zero and

(6)
$$\frac{K(t, x', \xi', \sigma') = 2d_1 \operatorname{Re} s_0 + d_2(|s_0|^2 + (\xi'^2 - |\sigma'|^2))}{s(t, x', \tau', \sigma') = s_0(t, x', \xi', \sigma') - ic(t, x')\gamma'}.$$

Now we shall consider a real point stated in Introduction at which Lopatinski determinant vanishes and λ is double. Recall the definition of Lopatinski determinant R for our problem (P, B):

$$R(t, x', \tau', \sigma') = \sqrt{\tau'^2 - |\sigma'|^2} - s(t, x', \tau', \sigma'),$$

where $\sqrt{\tau'^2 - |\sigma'|^2}$ is a root in λ of $\lambda^2 + |\sigma'|^2 - \tau'^2 = 0$ whose imaginary part is positive if $\gamma' = -\text{Im } \tau' > 0$. Hence, in this case, such a real point $(t_0, x'_0, 0, \xi'_0, \sigma'_0)(\gamma'=0)$ satisfies the relations:

(7) $\xi_0'^2 = |\sigma_0'|^2$ and $s_0(t_0, x_0', \xi_0', \sigma_0') = 0$. Suppose that the following inequalities hold in a neighbourhood of a real point satisfying (7):

(8) $K(t, x', \xi', \sigma) \ge 0$ and $\operatorname{Im}({}^*MQ - QM)(t, x, \xi', \sigma', \gamma') \ge C\gamma' I$. Then a priori L^2 -estimate follows from a sharp form of Gårding inequality ([7]) and [9], Lemma 7.2 (the treatment of the term $\langle \gamma' Hu_1, u_1 \rangle_{0,\gamma}$); that is, for a large constant $\gamma > 0$,

$$\gamma^{2} \|\varphi U\|_{0,\gamma}^{2} \leq C(\|F\|_{0,\gamma}^{2} + \gamma^{2} \langle \Lambda^{1/2}g \rangle_{0,\gamma}^{2} + \gamma \|u\|_{0,\gamma}^{2}),$$

where the support of symbol $\varphi(t, x, \xi', \sigma', \gamma')$ of order zero is contained in a small neighbourhood of a point satisfying (7).

We shall introduce a new variable ζ in a neighbourhood of a point satisfying (7):

(9)
$$\zeta = \tau - |\sigma|$$
 if $\xi > 0$ or $\zeta = \tau + |\sigma|$ if $\xi < 0$.

Hereafter we shall consider the first case, since the argument below is applicable to the second case. Then we have

(10)
$$s_0(t, x', \xi', \sigma') = c(t, x') |\sigma'| + \sum_{j=1}^{n-1} b_j(t, x') \sigma'_j + c(t, x') \operatorname{Re} \zeta' = \alpha(t, x', \sigma') + c(t, x') \operatorname{Re} \zeta',$$

where the second equality is the definition of α . Putting as in [9], § 7 $d_1(t, x', \xi', \sigma') = d_1^0(t, x', \sigma') + d_1^1(t, x', \sigma') \operatorname{Re} \zeta',$

(11)
$$d_2(t, x', \xi', \sigma') = d_2^0(t, x', \sigma')$$

(Remark that, in [9], $d_1^1=0$ and the linear term in $\operatorname{Re} \zeta'$ of d_2 is cosidered), then we can rewrite K as a polynomial in $\operatorname{Re} \zeta'$ of degree 2:

$$K(t, x', \xi', \sigma') = K_0 + 2K_1 \operatorname{Re} \zeta' + K_2 (\operatorname{Re} \zeta')^2,$$

249

where

(12)

$$K_{0}(t, x', \sigma') = 2d_{1}^{0} \operatorname{Re} \alpha + d_{2}^{0} |\alpha|^{2},$$

$$K_{1}(t, x', \sigma') = d_{1}^{0} \operatorname{Re} c + d_{1}^{1} \operatorname{Re} \alpha + d_{2}^{0}(|\sigma'| + \operatorname{Re} (\bar{c}\alpha)),$$

$$K_{2}(t, x', \sigma') = 2d_{1}^{1} \operatorname{Re} c + d_{2}^{0}(1 + |c|^{2}).$$

§ 3. A construction of a symmetrizer Q. In this section we shall show that (8) holds in a small neighbourhood of a point satisfying (7), if

(13) $d_1^0 = |\sigma'| + \operatorname{Re}(\bar{c}\alpha), \quad d_1^1 = 1 + |c|^2, \quad d_2^0 = -\operatorname{Re} c,$

and f is a large positive constant. Here we remark that the choice of d_1 and d_2 is a natural extension of one in [1]. It follows from (12) and (13) that

(14) $\begin{array}{l} K_0 = 2 |\sigma'| \operatorname{Re} \alpha + \operatorname{Re} c(\operatorname{Re} \alpha)^2 - \operatorname{Re} c(\operatorname{Im} \alpha)^2 + 2 \operatorname{Im} c \operatorname{Re} \alpha \operatorname{Im} \alpha, \\ K_1 = (1+|c|^2) \operatorname{Re} \alpha, \qquad K_2 = (1+|c|^2) \operatorname{Re} c. \end{array}$

In order to prove that $K \ge 0$, we need the following lemmas.

Lemma 1 ([8]). A frozen problem $(P, B)_{(t,x')}$ at a boundary point (t, x', 0) is L²-well posed if and only if, for every σ , either

(I) when $\operatorname{Re} \alpha = \operatorname{Re} \beta = 0$, $1 + |\sigma|^{-2} \operatorname{Im} \alpha \operatorname{Im} \beta > 0$ or

(II) when $(\operatorname{Re} \alpha)^2 + (\operatorname{Re} \beta)^2 \neq 0$,

$$A = \begin{pmatrix} 2 |\sigma|^{-1} \operatorname{Re} \alpha & |\sigma|^{-2} \operatorname{Im} (\alpha \overline{\beta}) \\ |\sigma|^{-2} \operatorname{Im} (\alpha \overline{\beta}) & 2 |\sigma|^{-1} \operatorname{Re} \beta \end{pmatrix} \ge 0,$$

where α is considered as a fuction in σ and

(15)
$$\beta(t, x', \sigma) = c(t, x') |\sigma| - \sum_{j=1}^{n-1} b_j(t, x') \sigma_j$$

Hereafter β is considered as a function σ' . Lemma 2.

$$(K_1)^2 - K_0 K_2 = -4^{-1}(1+|c|^2) |\sigma'|^2 (\det A).$$

Proof.

$$(K_1)^2 - K_0 K_2$$

$$= (1+|c|^2)^2 (\operatorname{Re} \alpha)^2 - (1+|c|^2) \operatorname{Re} c (2 |\sigma'| \operatorname{Re} \alpha + \operatorname{Re} c (\operatorname{Re} \alpha)^2 - \operatorname{Re} c (\operatorname{Im} \alpha)^2 + 2 \operatorname{Im} c \operatorname{Re} \alpha \operatorname{Im} \alpha)$$

 $= -(1+|c|^2)(\operatorname{Re} \alpha(2 |\sigma'| \operatorname{Re} c - \operatorname{Re} \alpha) - (\operatorname{Re} c \operatorname{Im} \alpha - \operatorname{Im} c \operatorname{Re} \alpha)^2).$ Using the relations $\operatorname{Re} \alpha + \operatorname{Re} \beta = 2 |\sigma'| \operatorname{Re} c$ and $2(\operatorname{Re} c \operatorname{Im} \alpha - \operatorname{Im} c \operatorname{Re} \alpha)$ $= \operatorname{Im} (\alpha \overline{\beta}), \text{ we obtain the lemma.}$

Lemma 3. If the case (II) in Lemma 1 is valid, then we have $K_0 \ge 0$ and if $K_0 = 0, K_1 = 0$.

Proof. Put

$$X=2^{-1} |\sigma'|^{-2} \operatorname{Im} (\alpha \overline{\beta}), \qquad Y=|\sigma'|^{-1} \operatorname{Re} \left(\sum_{j=1}^{n-1} b_j \sigma'_j \right).$$

Then the case (II) is valid if and only if

 $\operatorname{Re} c \geq 0 \quad \text{and} \quad X^2 + Y^2 \leq (\operatorname{Re} c)^2.$

Furthermore we have

(16) $|\sigma'|^{-2} K_0 = (\text{Re } c)^{-1} (2 \text{ Re } c(Y + \text{Re } c) + |c|^2 (Y + \text{Re } c)^2 - X^2).$ In fact, since $\text{Re } \alpha = \text{Re } c + Y$, the left hand side of (16) becomes

250

 $2 (\operatorname{Re} c + Y) + \operatorname{Re} c (\operatorname{Re} c + Y)^2$

$$+\operatorname{Im} \alpha \Big(\operatorname{Re} c \operatorname{Im} c + 2Y \operatorname{Im} c - \operatorname{Re} c |\sigma'|^{-1} \operatorname{Im} \Big(\sum_{j=1}^{n-1} b_j \sigma'_j\Big)\Big).$$

Using the relation

(17)
$$X = 2^{-1} |\sigma'|^{-2} \operatorname{Im} (\alpha \overline{\beta}) = \operatorname{Re} c |\sigma'|^{-1} \operatorname{Im} \left(\sum_{j=1}^{n-1} b_j \sigma'_j \right) - Y \operatorname{Im} c,$$

the above quantity is equal to

 $2(\operatorname{Re} c + Y) + \operatorname{Re} c (\operatorname{Re} c + Y)^2 + \operatorname{Im} \alpha (\operatorname{Im} c (\operatorname{Re} c + Y) - X).$

Again using (17), Im $\alpha = (\operatorname{Re} c)^{-1}$ (Im $c(\operatorname{Re} c + Y) + X$) and hence (16) is proved. By a simple computation, we see that a circle $X^2 + Y^2 = (\operatorname{Re} c)^2$ and a hyperbola $K_0 = 0$ have only one common point $(X, Y) = (0, -\operatorname{Re} c)$ at which two curves tangent each other to second order and a hyperbola K_0 intersects to X-axis at two points $(\pm \operatorname{Re} c(2 + |c|^2)^{1/2}, 0)$. Therefore the lemma is proved.

Now we return to the proof of (8). Using (10) and (15), it follows from Lemma 1 that Re $c \ge 0$. Then we see from (14) that $K_2 \ge 0$. In the case (I) it holds that Re $\alpha = 0$ and Re c = 0. Hence we see from this and (14) that K=0. Remark that we do not use the inequality in the case (I). In the case (II) we see from Lemmas 1, 2, 3 that $K \ge 0$. To prove the second assertion in (8), we remark that Re ζ' , Re α and Im α are small in a neighbourhood of a point satisfying (7). Hence, in such a neighbourhood, that $d_1 > 0$ follows from (11) and (13). Therefore, it follows from (4) that the second assertion in (8) holds if f be taken large.

References

- R. Agemi: On energy inequalities of mixed problems for hyperbolic equations of second order. Jour. Fac. Sci. Hokkaido Univ., Ser. I, 21, 221-236 (1971).
- [2] ——: Remarks on L²-well posed mixed problems for hyperbolic equations of second order. Hokkaido Math. J., 2, 214–230 (1973).
- [3] R. Agemi and T. Shirota: On necessary and sufficient conditions for L²well-posedness of mixed problems for hyperbolic equations. Jour. Fac. Sci. Hokkaido Univ., Ser. I, 21, 133-151 (1970).
- [4] ——: On necessary and sufficient conditions for L²-well-posedness of mixed problems for hyperbolic equations. II. ibid, 22, 137-149 (1972).
- [5] H. O. Kreiss: Initial boundary value problems for hyperbolic system. Comm. Pure Appl. Math., 19, 277-298 (1970).
- [6] K. Kubota: Remarks on boundary value problems for hyperbolic equations. Hokkaido Math. J., 2, 202-213 (1973).
- [7] P. D. Lax and L. Nirenberg: On stability for difference schemes. A sharp form of Gårding inequality. Comm. Pure Appl. Math., 19, 473-492 (1966).
- [8] S. Miyatake: On mixed problem for hyperbolic equation of second order. R. I. M. S. Kyoto Univ., Surikaisekikenkyusyo Kokyuroku, No. 205, 15-27 (1974) (in Japanese).
- [9] T. Ohkubo and T. Shirota: On the structure of L^2 -well posed mixed prob-

lems for hyperbolic systems of first order (to appear in Hokkaido Math. J., Vol. 4).

- [10] R. Sakamoto: Mixed problems for hyperbolic equations. I. J. Math. Kyoto Univ., 10, 349-373 (1970).
- [11] T. Shirota: On the propagation speed of hyperbolic operator with mixed boundary condition. Jour. Fac. Sci. Hokkaido Univ., 22, 25-31 (1972).