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1. We shall consider a (bounded linear) operator T acting on a
Hilbert space . An operator T is hyponormal if TT*<T*T. And
T is quasinormal if T commutes with T*T. 1In [2] and [3], Campbell
has discussed a subclass of hyponormal operators: An operator 7T is
heminormal if T is hyponormal and T*T commutes with T7T*. The
subclass is called (BN)* in [3]. Also he proved

Theorem A. If T is heminormal, then T" is hyponormal for
every n.

We shall define a new class of operators to improve Theorem A.
For each k, an operator T is k-hyponormal if
(1) (TT**<(T*T)*.

Since f(A)=2* for 0<a<1 is operator monotone, every k-hyponormal
operator is hyponormal.

In this note, in § 2 we shall give characterizations of heminormal,
quasinormal and k-hyponormal operators by means of an operator equa-
tion due to Douglas [4]. In § 3, we shall show that every heminormal
operator is n-hyponormal for every n, and for each k, if T is k-hypo-
normal, then T* is hyponormal.

2. In this section, we shall characterize heminormal, quasinormal
and k-hyponormal operators. In [4], Douglas showed the following

Theorem B. Let A and B be operators on . Then AA* < *BB*
for some 2=0 if and only if there is an operator C such that A=BC.

In the proof of Theorem B, an operator C is constructed as follows;
(i) C*(B*x)=A*x for every x ¢ §, (ii) C* vanishes on ran (B*)+, and
(i) |C||=a.

Now we shall give a characterization of heminormal operators.

Theorem 1. An operator T is heminormal if and only if there is
a positive contraction P such that
(2) TT*=PT*T.

Proof. Suppose that T is heminormal. Since T*7T commutes with
TT*, we have (TT*)*<(T*T):. It follows from Theorem B that there is
an operator C such that TT*=T*TC, i.e., TT*=C*T*T. So we put
P=C*, then we have by the above remarks (i) and (ii)

(P(xy+ 1), 2, + 2,) =(Pw,, ) =0
for every «, e ran (T*T) and x, ¢ ran (T*T)L, that is, C*=0. Since P
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is contractive by the above remark (iii), there is a positive contraction
P with (2).
Conversely, suppose that there is a positive contraction P with (2).
Since P commutes with T*T, we have
T*TTT*=T*TPT*T=P(T*T):*=TT*T*T,
8o that T*T commutes with TT*. Also we have
TT*=PT*T=(T*T)*P(T*T)V* < T*T,
which completes the proof.

Next we shall characterize quasinormal operators.

Theorem 2. An operator T is quasinormal if and only if thereis
a projection P with (2).

Proof. Suppose that T is quasinormal and 7=V |T| is the polar
decomposition of 7. It follows from [1; Lemma 4.1] that | T'| commutes
with V. Then we have

TT*=V |TV*=VV*T*T,
so that P=VV* is a projection with (2).

Conversely, suppose that there is a projection P with (2). Since

T*T commutes with P, we have

T*TTT*=T*TPT*T =(PT*Ty=(TT*).
Since ran (T*)t=ker (T), we have T*T*=TT*T. Hence T is quasi-
normal.

Remark. If P is a positive operator with (2), then P commutes
with TT*. Actually, we have

PTT*=PT*T=PT*TP=TT*P.

We shall give a similar characterization for 2-hyponormal
operators.

Theorem 3. An operator T is 2-hyponormal if and only if there
18 o contraction P with (2).

Proof. As in the proof of Theorem 1, for every 2-hyponormal
operator, there is a contraction P with (2). If there is a contraction
P with (2), then we have

(IT*)=PT*T)*(PT*T)=T*TP*PT*T <(T*T)?,
which completes the proof.

Remark. By a similar proof, we can show that T is k-hyponormal
if and only if there is a contraction P such that (TT*)¥2=P(T*T)*?,

3. In this section, we shall discuss on k-hyponormal operators.
At first, we shall show the following

Theorem 4. Ewvery heminormal operator is k-hyponormal for
every k.
Proof. By the assumption, we have
(T*T)k—(TT*)*
=(T*T—-TTH{(T*D)* 4+ (T*TY*(TT*)+ - - -
+(T*TY(TT*)**+(TT*)* '} =0.
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It is known that f(1)=2" is operator monotone for every 0<a<1,
cf. [5]. Hence we have

Lemma 5. If T is k-hyponormal, then T is n-hyponormal for
every 1=sn=<k.

Theorem 6. For each k, if T is k-hyponormal, then T* is hypo-
normal.

Proof. Notethat T is 1-hyponormal if and only if T is hyponormal.
We shall prove inductively that T*T**<(TT*)* and (T*T)*<T**T*,
Suppose that they are true for k=n—1 and 7T is n-hyponormal. Then
we have by Lemma 5

TrT*n =T (Tr 1T~ T* < T(TT*) ' T* < T(T*T)'T* = (T T*)",
and

(T* T)n — T*(TT*)n—-lTé T*(T* T)n*lTé T*(T*n—lTn-—l)T____ T*nTn.
Therefore, if T is k-hyponormal, then we have

TeT*k < (TT*)e < (T*T)e < T*4T*,
which completes the proof.

By Theorem 4 and Theorem 6, we have the following theorem due
to Campbell.

Theorem C ([8]). If T is heminormal, then T™ is hyponormal for
every n.

It is known that if T is invertible and hyponormal, then T-! is
hyponormal. We have an analogous result on k-hyponormal operators.

Theorem 7. For each k, if T is invertible and k-hyponormal,
then T-! is k-hyponormal.

Proof. Since A=(TT*)* and B=(T*T)* are invertible and 0<A
<B, then we have B2 AB~*<1, so that 1<BY2A-'B*2. Hence we
have B"'< A, that is,

(T1T*- Y =(T*T)~* < (TT*) %= (T*"'T-)*,

4, A factorization of hyponormal operators is also discussed by
T. Saito in his unpublished paper [6]. We obtain relations among
subnormal, heminormal and k-hyponormal operators as follows:

(1) There is a hyponormal operator which is not k-hyponormal.

(2) There is a k-hyponormal operator which is not heminormal.

(8) There is a subnormal operator which is not k-hyponormal.

(4) There is a heminormal operator which is not subnormal. (4)
is showed in [2]. The proofs will appear in a separate paper.
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