50. On a Problem of E. L. Stout

By Masayuki Osada
Department of Mathematics, Hokkaido University
(Comm. by Kinjirô Kunugr, m. J. A., April 12, 1975)

1. Introduction. The following very interesting theorem of T. Radó [3] was proved by many mathematicians (H. Behnke-K. Stein, H. Cartan, I. Glicksberg, M. Goldstein and T. R. Chow, E. Heinz, R. Kaufman and T. Radó, etc.).

Theorem of Radó. Let $f(z)$ be a complex-valued continuous function defined in $\{|z|<1\}$. If $f(z)$ is analytic in each component of $\{|z|<1\}-f^{-1}(0)$, then $f(z)$ is analytic in $\{|z|<1\}$.

On the other hand, E. L. Stout [5] proved the possibility of replacing the set $\{|z|<1\}-f^{-1}(0)$ by $\{|z|<1\}-f^{-1}(E)$ where E is a set of capacity zero. Moreover, he proposed another possibility of $\{|z|<1\}$ $-f^{-1}(0)$ by $\{|z|<1\}-f^{-1}(E)$ where E is a set of positive capacity. In this paper, the present author will give an answer to this problem under some condition.
2. Notation and terminology. Let G be a $n+1$-ply connected region on an open Riemann surface R whose boundary consists of $n+1$ rectifiable closed analytic Jordan curves $C_{0}, C_{1}, \cdots, C_{n}$, where C_{0} contains C_{1}, \cdots, C_{n} in its interior. Let ω be the harmonic measure in G with boundary values 0 on C_{0} and 1 on C_{1}, \cdots, C_{n}. We call $\mu=2 \pi / D_{G}(\omega)$ the harmonic modulus of G where $D_{G}(\omega)$ is the Dirichlet integral of ω over G.

Proof of the Theorem. Lemma (Sario) (cf. [4]). Let R be an open Riemann surface. If there exists a normal exhaustion $\left\{R_{n}\right\}$ satisfying $\sum_{n=1}^{\infty} \mu_{n}^{*}=\infty$, where μ_{n}^{*} is the minimum harmonic modulus of connected components of $R_{n}-R_{n-1}$, then R belongs to $O_{A D}$.

We shall prove
Theorem. Let U be an open unit disk $\{|z|<1\}$ and F be a compact set in the complex plane C. Let $f(z)$ be a complex-valued continuous function on \bar{U}. Set $E=f^{-1}(F)$. Suppose f is analytic in each component of $\bar{U}-E$ and the valence function $n_{f}(w)$ is finite. If $\hat{C}-F$ belongs to $O_{A D}$ in the sense of Sario (\hat{C} is the one point compactification of C), then the set E is of class $N_{D} .{ }^{1)} \quad$ Moreover if $D_{U-E}(f)<\infty$, then f is analytic in \bar{U} and $D_{U}(f)<\infty$.

Proof. First, suppose $n_{f}(w)$ is bounded and $n_{f}(w) \leqq N_{f}$. Let $\left\{R_{n}\right\}$

1) See [1].
be a normal exhaustion of $\hat{C}-F$ and let $R_{n}-\bar{R}_{n-1}=\bigcup_{i=1}^{m} R_{n}^{(j)}(m=m(n))$ where $\left\{R_{n}^{(i)}\right\}$ are connected components of $R_{n}-\bar{R}_{n-1}$. Let ω_{n} be the harmonic measure in $R_{n}-\bar{R}_{n-1}$ with boundary values 0 on ∂R_{n-1} and 1 on ∂R_{n}. Let $f^{-1}\left(R_{n}^{(i)}\right)=\bigcup_{j=1}^{l} R_{n}^{(i j)}(l=l(n, i))$ where $\left\{R_{n}^{(i j)}\right\}$ are connected components of $f^{-1}\left(R_{n}^{(i j)}\right)$. Then $\omega_{n} \circ f$ is harmonic in each $R_{n}^{(i j)}$ and is equal to 0 on $\partial\left(f^{-1}\left(R_{n-1}\right)\right)$ and 1 on $\partial\left(f^{-1}\left(R_{n}\right)\right)$. Let \hat{U} be the double of U about ∂U. We construct a function $\hat{\omega}_{n}$ on $\hat{R}_{n}^{(i j)}=\left\{\overline{\left.R_{n}^{(i j)} \cup R_{n}^{(i j) *}\right\}^{\circ}}\right.$ in the following where $R_{n}^{(i j)^{*}}$ is the symmetric set of $R_{n}^{(i j)}$ with respect to the origin.

$$
\hat{\omega}_{n}(z)= \begin{cases}\left(\omega_{n} \circ f\right)(z) & z \in \overline{R_{n}^{(i j)}} \\ \left(\omega_{n} \circ f\right)(z) & z^{*} \in \overline{R_{n}^{(i j)^{*}}} .\end{cases}
$$

Then $\hat{\omega}_{n}$ is a Dirichlet function ${ }^{2)}$ on $\hat{R}_{n}^{(i j)}$. Let ω_{n}^{*} be the harmonic measure in $\hat{R}_{n}^{(i j)}$ with boundary value $\hat{\omega}_{n}$ on $\partial \hat{R}_{n}^{(i j)}$. By the Dirichlet principle, we have

$$
\begin{aligned}
D_{\hat{R}_{n}^{(i j)}}^{\left(\omega_{n}^{*}\right)} & \left.\leqq D_{\hat{R}_{n}^{(i)}}^{(i)} \hat{\omega}_{n}\right) \\
& =2 D_{R_{n}^{(i)}}\left(\omega_{n} \circ f\right) \\
& \leqq 2 N_{f} D_{R_{n}^{(i)}}\left(\omega_{n}\right) .
\end{aligned}
$$

Then

$$
\frac{1}{2 N_{f}} \cdot \frac{2 \pi}{D_{R_{n}^{(i)}}\left(\omega_{n}\right)} \leqq \frac{2 \pi}{D_{\left.R_{n}^{(i)}\right)}\left(\omega_{n}^{*}\right)} .
$$

Hence we get

$$
\frac{1}{2 N_{f}} \cdot \mu_{n}^{(i)} \leqq \nu_{n}^{(i j)},
$$

where $\mu_{n}^{(i)}$ is the harmonic modulus of $R_{n}^{(i)}$ and $\nu_{n}^{(i j)}$ is the harmonic modulus of of $\hat{R}_{n}^{(i j)}$. Then it holds

$$
\frac{1}{2 N_{f}} \mu_{n}^{*} \leqq \nu_{n}^{*}
$$

where $\mu_{n}^{*}=\min \mu_{n}^{(i)}$ and $\nu_{n}^{*}=\min \nu_{n}^{(i j)}$, and

$$
\infty=\frac{1}{2 N_{f}} \sum_{n=1}^{\infty} \mu_{n}^{*} \leqq \sum_{n=1}^{\infty} \nu_{n}^{*}
$$

By the Lemma, the set $U-\left(E \cup E^{*}\right)$ belongs to $O_{A D}$ in the sense of Sario where E^{*} is the symmetric set of E. Hence the set $E \cup E^{*}$ is of class N_{D}, which completes the proof.

Secondly, suppose $n_{f}(w)$ is unbounded. Set $F_{n}=\left\{w: n_{f}(w) \leqq n\right\} \cap F$ ($n=0,1,2, \cdots$) and $E_{n}=f^{-1}\left(F_{n}\right)$. Then E_{n} belongs to N_{D} and E $=\bigcup_{n=1}^{\infty} E_{n}$ belongs to N_{D}. This completes the proof.

Remark. In the above proof we used the following theorem: If $\left\{E_{n}\right\}$ is a countable family, with compact union E, of $A D$-removable sets in a closed Riemann surface R then E is again an $A D$-removable set (cf. [4]).
2) See [2].

References

[1] L. V. Ahlfors and A. Beurling: Conformal invariants and function-theoretic null-sets. Acta Math., 83, 101-129 (1950).
[2] C. Constantinescu and A. Cornea: Ideale Ränder Riemannscher Flächen. Springer-Verlag (1963).
[3] T. Radó: Über eine nicht fortsetzbare Riemannsche Mannigfaltigkeit. Math. Z., 20, 1-6 (1924).
[4] L. Sario and M. Nakai: Classification Theory of Riemann Surfaces. Springer-Verlag (1970).
[5] E. L. Stout: A generalization of a theorem of Radó. Math. Ann., 177, 339-340 (1968).

