46. Theory of Tempered Ultrahyperfunctions. II

By Mitsuo Morimoto
Sophia University

(Comm. by Kunihiko Kodaira, m. J. A., April 12, 1975)

We continue our study of tempered ultrahyperfunctions and use the same notations as in our previous note [5]. In this paper, we consider exclusively the 1-dimensional case.
§ 1. Fourier transformation of distributions with properly convex support. Let $K^{\prime}=[a, b]$ be a closed interval in \boldsymbol{R}. We put

$$
h_{K^{\prime}}(x)=\sup \{x \xi ; \xi \in[a, b]\}= \begin{cases}b x & \text { for } x \geqslant 0, \tag{1}\\ a x & \text { for } x<0\end{cases}
$$

We denote by $H\left(\boldsymbol{R} ; K^{\prime}\right)$ the space of all C^{∞} functions f on \boldsymbol{R} for which there exists a constant $\varepsilon>0$ such that for any integer $p \geqslant 0, \exp \left(h_{R^{\prime}}(x)\right.$ $+\varepsilon|x|) D^{p} f(x)$ is bounded in \boldsymbol{R}, where $D^{p}=d^{p} / d x^{p} . H\left(\boldsymbol{R} ; K^{\prime}\right)$ is the inductive limit of FS spaces. The dual space $H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$ of $H\left(\boldsymbol{R} ; K^{\prime}\right)$ is a space of distributions of exponential growth ([5]).

Proposition 1. Let β be a C^{∞} function on \boldsymbol{R} such that $0 \leqslant \beta(x) \leqslant 1$, $\beta(x)=1$ for $x \geqslant B($ resp. $x \leqslant-B)$ and $\beta(x)=0$ for $x \leqslant-B$ (resp. $x \geqslant B$), with some constant $B>0$. Then $\beta(x) \exp (-i x \zeta) \in H\left(\boldsymbol{R} ; K^{\prime}\right)$ if and only if $\operatorname{Im} \zeta<-b(r e s p . \operatorname{Im} \zeta>-a)$.

Proof. Remark first
(2) $\quad\left|e^{-i x \zeta}\right|=e^{x \eta},\left|D^{p} e^{-i x \zeta}\right|=\left|\zeta^{p}\right| e^{x \eta}$, where $\zeta=\xi+i \eta$.

Therefore, we have

$$
\exp \left(h_{K^{\prime}}(x)+\varepsilon|x|\right)\left|D^{p} e^{-i x}\right|= \begin{cases}\left\{\zeta^{p} \mid \exp (b+\varepsilon+\eta) x\right. & \text { for } x>0, \\ \left|\zeta^{p}\right| \exp (a-\varepsilon+\eta) x & \text { for } x<0,\end{cases}
$$

from which follows the proposition.
q.e.d.

We put

$$
H_{(+)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)=\left\{T \in H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) ; \text { supp } T \subset[-A, \infty) \text { for some } A \geqslant 0\right\},
$$

(3) $H_{(-)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)=\left\{T \in H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) ; \operatorname{supp} T \subset(-\infty, A]\right.$ for some $\left.A \geqslant 0\right\}$, $H_{(0)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)=\left\{T \in H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) ; \operatorname{supp} T \subset[-A, A]\right.$ for some $\left.A \geqslant 0\right\}$.
These are linear subspaces of $H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$. We put further

$$
\begin{align*}
H_{+}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) & =\left\{T \in H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) ; \operatorname{supp} T \subset[0, \infty)\right\} \\
H_{-}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) & =\left\{T \in H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) ; \operatorname{supp} T \subset(-\infty, 0]\right\}, \\
H_{0}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) & =\left\{T \in H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) ; \operatorname{supp} T=\{0\}\right\} .
\end{align*}
$$

The spaces $H_{+}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right), H_{-}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$ and $H_{0}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$ are closed subspaces of the space $H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$.

Let $T \in H_{(+)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$ and $\operatorname{supp} T \subset[-A, \infty)\left(r e s p . T \in H_{(-)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)\right.$ and $\operatorname{supp} T \subset(-\infty, A])$. We choose a C^{∞} function β such that $0 \leqslant \beta(x) \leqslant 1$, $\beta(x)=1$ for $x \geqslant-A-\delta$ (resp. $x \leqslant A+\delta$) and $\beta(x)=0$ for $x \leqslant-A-2 \delta$
(resp. $x \geqslant A+2 \delta$) with some $\delta>0$. The function
(4)

$$
\tilde{T}(\zeta)=(2 \pi)^{-1 / 2}\left(T_{x}, \beta(x) e^{-i x \zeta}\right)
$$

is independent of the choice of the function β and is defined for $\zeta \in T((-\infty,-b)$) (resp. for $\zeta \in T((-a, \infty)) . \quad \tilde{T}$ is, by definition, the Fourier transformation of $T \in H_{(+)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$ or $H_{(-)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$. We will denote also $\mathscr{F} T=\tilde{T}$. If $T \in H_{(0)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)=H_{(+)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \cap H_{(-)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$, then (4')

$$
\mathscr{F} T(\zeta)=\tilde{T}(\zeta)=(2 \pi)^{-1 / 2}\left(T_{x}, e^{-i x \zeta}\right)
$$

is an entire function of ζ.
For an open set Ω of C, $\mathcal{A}_{0}(\Omega)$ denotes the space of all holomorphic functions ψ on Ω for which there exist for any $\varepsilon>0$ an integer $p \geqslant 0$ and a constant $C \geqslant 0$ such that

$$
\begin{equation*}
|\psi(\zeta)| \leqslant C\left(1+\left|\zeta^{p}\right|\right) \quad \text { for } \zeta \in \boldsymbol{C} \backslash(C \backslash \Omega), \tag{5}
\end{equation*}
$$

where $(C \backslash \Omega)$, denotes the ε-neighborhood of $C \backslash \Omega$. By the Liouville theorem, $\mathcal{A}_{0}(C)$ is the space of all polynomials. We can show the following theorem (see Hasumi [1]) :

Theorem 1. Let $K^{\prime}=[a, b]$. The Fourier transformation defined by (4) or (4') establishes the following isomorphisms:

$$
\begin{equation*}
\mathscr{F}: H_{0}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \rightarrow \mathcal{A}_{0}(C) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\mathscr{F}: H_{+}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \rightarrow \mathcal{A}_{0}(T((-\infty,-b))), \tag{6'}
\end{equation*}
$$

$$
\mathscr{F}: H_{-}^{\prime}\left(R ; K^{\prime}\right) \rightarrow \mathcal{A}_{0}(T((-a, \infty)))
$$

Proof. (6) is well known. Suppose $T \in H_{+}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$. Then by Theorem 3 of [5], for any $\varepsilon>0$ there exist an integer p and a continuous bounded function F such that

$$
\begin{equation*}
T(x)=D^{p}[\exp (b x+\varepsilon x) F(x)] . \tag{7}
\end{equation*}
$$

Put $T_{0}=T-D^{p}[\exp (b x+\varepsilon x) Y(x) F(x)]$, where $Y(x)$ is the Heaviside Y function. We have

$$
\begin{aligned}
\tilde{T}(\zeta) & =(2 \pi)^{-1 / 2}\left(T_{x}, \beta(x) e^{-i x \zeta}\right) \\
& =2(\pi)^{-1 / 2}(i \zeta)^{p} \int_{0}^{\infty} F(x) \exp (b x+\varepsilon x) \exp (-i x \zeta) d x+\tilde{T}_{0}(\zeta) \\
& =(2 \pi)^{-1 / 2}(i \zeta)^{p} \int_{0}^{\infty} F(x) \exp ((b+\varepsilon+\eta) x) \exp (-i x \xi) d x+\tilde{T}_{0}(\zeta) .
\end{aligned}
$$

As $\tilde{T}_{0}(\zeta)$ is a polynomial, there exist an integer p_{0} and a constant $C_{0} \geqslant 0$ such that

$$
\begin{equation*}
|\tilde{T}(\zeta)| \leqslant C_{0}\left(1+\left|\zeta^{p_{0}}\right|\right) \quad \text { for } \eta<-b-2 \varepsilon \tag{8}
\end{equation*}
$$

Hence $\mathcal{F}^{\prime}\left(H_{+}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)\right) \subset \mathcal{A}_{0}(T((-\infty,-b)))$. Similarly we can show $\mathcal{F}^{\prime}\left(H_{-}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)\right) \subset \mathcal{A}_{0}(T((-a, \infty)))$.

Let $\varphi \in \mathscr{S}\left(T\left(-K^{\prime}\right)\right)$. There exists a positive number ε_{0} such that $\varphi \in \mathscr{S}_{\mathrm{E}}\left(T\left(-K_{\varepsilon_{0}}^{\prime}\right)\right)$. We have for $\eta \in-K_{\varepsilon_{0}}^{\prime}=\left(-b-\varepsilon_{0},-a+\varepsilon_{0}\right)$

$$
\begin{equation*}
\mathscr{F} \varphi(x)=(2 \pi)^{-1 / 2} \int_{R+i \eta} \varphi(\zeta) e^{-i x 5} d \zeta . \tag{9}
\end{equation*}
$$

If β is the function as in (4) and if $-b-\varepsilon_{0}<\eta<-b$ or $-a<\eta<-a+\varepsilon_{0}$, the integral

$$
\begin{equation*}
\beta(x) \mathscr{F} \varphi(x)=(2 \pi)^{-1 / 2} \int_{R+i \eta} \varphi(\zeta)\left(\beta(x) e^{-i x 5}\right) d \zeta \tag{10}
\end{equation*}
$$

converges in the topology of $H\left(\boldsymbol{R} ; K^{\prime}\right)$. Therefore for $T \in H_{+}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$ (resp. $T \in H_{-}^{\prime}\left(R ; K^{\prime}\right)$), we have

$$
\begin{equation*}
(T, \mathscr{F} \varphi)=\int_{R+i \eta} \mathscr{F} T(\zeta) \varphi(\zeta) d(\zeta) \tag{11}
\end{equation*}
$$

with $-b-\varepsilon_{0}<\eta<-b$ (resp. with $-a<\eta<-a+\varepsilon_{0}$). As the Fourier transformation $\mathscr{F}: \mathscr{E}\left(T\left(-K^{\prime}\right)\right) \rightarrow H\left(\boldsymbol{R} ; K^{\prime}\right)$ is a topological isomorphism (Theorem 4^{\prime} of [5]), the Fourier transformation (6^{\prime}) and ($6^{\prime \prime}$) are injective.

We shall prove the Fourier transformation (6^{\prime}) is surjective. Suppose $\psi \in \mathcal{A}_{0}\left(T((-\infty,-b))\right.$) is given. Fix $\varphi \in \mathscr{S}_{\mathcal{C}}\left(T\left(-K^{\prime}\right)\right)$ and suppose $\varphi \in \mathfrak{S}_{C}\left(T\left(-K_{\varepsilon_{0}}^{\prime}\right)\right)$. Because of the Cauchy integral theorem, the integral

$$
\begin{equation*}
\int_{R+i_{\eta}} \psi(\zeta) \varphi(\zeta) d \zeta \tag{12}
\end{equation*}
$$

is independent of η satisfying $-b-\varepsilon_{0}<\eta<-b$. We can define a continuous linear functional on $\mathscr{S o}^{(}\left(T\left(-K^{\prime}\right)\right)$ by assigning (12) to $\varphi \in \mathscr{S C}_{(}(T$ $\left(-K^{\prime}\right)$). Hence

$$
\begin{equation*}
(S, f)=\int_{R+i \eta} \psi(\zeta)(\overline{\mathscr{F}} f)(\zeta) d \zeta \quad\left(-b-\varepsilon_{0}<\eta<-b\right) \tag{13}
\end{equation*}
$$

defines a continuous linear functional S on $H\left(\boldsymbol{R} ; K^{\prime}\right)$.
We claim that $\operatorname{supp} S$ is contained in $[0, \infty)$. In fact, by the definition, for any $\varepsilon>0$ there exist an integer p_{0} and a constant $C_{0} \geqslant 0$ such that (8) is valid for $\eta=\operatorname{Im} \zeta<-b-\varepsilon$. If the support of f is compact and contained in $(-\infty,-\delta], \delta>0$, then $\overline{\mathcal{F}} f$ is an entire function and for any integer p there exists a constant $C \geqslant 0$ such that

$$
\left|\zeta^{p}\right||\overline{\mathscr{F}} f(\zeta)| \leqslant C \exp (\delta \eta) \quad \text { for } \eta<0 .
$$

Thus tending $\eta \rightarrow-\infty$ in (13), we get (S, f) $=0$. As $\delta>0$ is arbitrary, this shows supp $S \subset[0, \infty)$.

By (11) we have

$$
\int_{R+i \eta} \mathscr{F} S(\zeta) \varphi(\zeta) d \zeta=(S, \mathscr{F} \varphi)=\int_{R+i \eta} \psi(\zeta) \varphi(\zeta) d \zeta .
$$

Hence, putting $\psi_{0}(\zeta)=\mathscr{F} S(\zeta)-\psi(\zeta)$, we have

$$
\begin{equation*}
\int_{R+i \eta} \psi_{0}(\zeta) \varphi(\zeta) d \zeta=\int_{-\infty}^{\infty} \psi_{0}(\xi+i \eta) \varphi(\xi+i \eta) d \xi=0 \tag{14}
\end{equation*}
$$

for any $\varphi \in \mathscr{S}_{\mathrm{C}}\left(T\left(-K_{t_{0}}^{\prime}\right)\right),-b-\varepsilon_{0}<\eta<-b$. Because the restriction of $\mathcal{S}_{\varepsilon}\left(T\left(-K_{\varepsilon_{0}}^{\prime}\right)\right)$ on $\boldsymbol{R}_{\xi}+i \eta \cong \boldsymbol{R}_{\xi}\left(\eta \in-K_{s_{0}}^{\prime}\right.$ being fixed) forms a dense subspace of $\mathcal{S}\left(\boldsymbol{R}_{\xi}\right)$ and the function $\xi \mapsto \psi_{0}(\xi+i \eta)$ defines a tempered distribution, (14) shows $\psi_{0}(\xi+i \eta)=0$ as a distribution of ξ, whence $\psi_{0}=\mathscr{F} S-\psi=0$. This proves the surjectivity of (6'). We can show similarly the Fourier transformation ($6^{\prime \prime}$) is surjective.
q.e.d.

In order to describe the Fourier images of $H_{(+)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right), H_{(-)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$ and $H_{(0)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$, we introduce some notations. For an open set Ω in C, $\mathcal{A}_{\text {exp }}(\Omega)$ denotes the space of all holomorphic functions ψ on Ω for which the following estimate is valid with some constant $A \geqslant 0$: for any
$\varepsilon>0$, there exist an integer p and a constant $C \geqslant 0$ such that

$$
\begin{equation*}
|\psi(\zeta)| \leqslant C\left(1+\left|\zeta^{p}\right|\right) \exp (A|\operatorname{Im} \zeta|) \quad \text { for } \zeta \in C \backslash(C \backslash \Omega) . \tag{15}
\end{equation*}
$$

Theorem 2. Let $K^{\prime}=[a, b]$. Then the Fourier transformation \mathscr{F} defined by (4) or (4') establishes the following linear isomorphisms:

$$
\left(16^{\prime \prime}\right)
$$

$$
\begin{align*}
& \mathscr{F}: H_{(0)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \rightarrow \mathcal{A}_{\text {exp }}(C), \tag{16}\\
& \mathscr{F}: H_{(+)}^{\prime}\left(\boldsymbol{R} ; K^{\prime \prime}\right) \rightarrow \mathcal{A}_{\text {exp }}(T((-\infty,-b))) \quad \text { and } \\
& \mathscr{F}: H_{(-)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \rightarrow \mathcal{A}_{\text {exp }}(T((-a, \infty))) .
\end{align*}
$$

Proof. $H_{(0)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$ being the space of distributions with compact support, (13) is a linear isomorphism by the Paley-Wiener theorem.

Remark that

$$
\begin{aligned}
& H_{(+)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)=\left\{\tau_{A} T ; T \in H_{+}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right), A \in \boldsymbol{R}\right\} \quad \text { and } \\
& \mathcal{A}_{\mathrm{exp}}(T((-\infty,-b)))=\left\{e^{i A \xi} \psi(\zeta) ; \psi \in \mathcal{A}_{0}(T((-\infty,-b))), A \in \boldsymbol{R}\right\},
\end{aligned}
$$

where τ_{A} is the translation: $\left(\tau_{A} T\right)(x)=T(x-A)$. As we have (17)

$$
\mathscr{F}\left(\tau_{A} T\right)(\zeta)=e^{-i A \zeta}(\mathcal{F} T)(\zeta),
$$

the isomorphism (16^{\prime}) results from the isomorphism (6^{\prime}). ($16^{\prime \prime}$) can be similarly shown to be an isomorphism.
q.e.d.
§ 2. Fourier transformation of distributions of exponential growth. Proposition 2. We have the following exact sequences of linear spaces:

$$
\begin{gather*}
0 \rightarrow H_{(0)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \rightarrow H_{(+)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \oplus H_{(-)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \rightarrow H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \rightarrow 0 \\
\cup \cup \tag{18}\\
0 \rightarrow H_{0}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \rightarrow H_{+}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \oplus H_{-}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \rightarrow H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \rightarrow 0,
\end{gather*}
$$

where $S \in H_{(0)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$ goes to $(S,-S)$ and

$$
\left(T_{+}, T_{-}\right) \in H_{(+)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \oplus H_{(-)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)
$$

goes to $-T_{+}+T_{-}$.
In fact, by Theorem 3 of [5], we can decompose $T \in H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$ in the form of $T=-T_{+}+T_{-}$.

By the restriction mapping we consider $\mathcal{A}_{\text {exp }}(C)$ as a subspace of $\mathcal{A}_{\text {exp }}\left(C \backslash T\left(-K^{\prime}\right)\right)$ and $\mathcal{A}_{0}(C)$ as a subspace of $\mathcal{A}_{0}\left(C \backslash T\left(-K^{\prime}\right)\right)$. We define the quotient spaces

$$
\begin{align*}
& H_{T\left(-K^{\prime}\right)}^{1}\left(C ; \mathcal{A}_{\exp }\right)=\mathcal{A}_{\mathrm{exp}}\left(C \backslash T\left(-K^{\prime}\right)\right) / \mathcal{A}_{\exp }(C), \tag{19}\\
& H_{T\left(-K^{\prime}\right)}^{1}\left(C ; \mathcal{A}_{0}\right)=\mathcal{A}_{0}\left(C \backslash T\left(-K^{\prime}\right)\right) / \mathcal{A}_{0}(C)
\end{align*}
$$

Then we have the following commutative diagram, each row of which is exact:

$$
\begin{align*}
& 0 \rightarrow \mathcal{A}_{\exp }(C) \rightarrow \mathcal{A}_{\text {exp }}\left(C \backslash T\left(-K^{\prime}\right)\right) \rightarrow H_{T\left(-K^{\prime}\right)}^{1}\left(C ; \mathcal{A}_{\text {exp }}\right) \rightarrow 0 \tag{20}\\
& 0 \rightarrow \mathcal{A}_{0}(C) \rightarrow \mathcal{A}_{0}\left(C \backslash T\left(-K^{\prime}\right)\right) \rightarrow H_{T\left(-K^{\prime}\right)}^{1}\left(C ; \mathcal{A}_{0}\right) \rightarrow 0 .
\end{align*}
$$

Now for $\left(T_{+}, T_{-}\right) \in H_{(+)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \oplus H_{(-)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$ we put

$$
\Phi(\zeta)=\mathscr{F}\left(T_{+}, T_{-}\right)(\zeta)= \begin{cases}\mathscr{F} T_{-}(\zeta) & \text { for } \operatorname{Im} \zeta>-a \\ \mathscr{F} T_{+}(\zeta) & \text { for } \operatorname{Im} \zeta<-b\end{cases}
$$

Then by Theorems 1 and 2, the Fourier transformation $\mathscr{F}:\left(T_{+}, T_{-}\right) \rightarrow \Phi$ gives a linear isomorphism of

$$
H_{(+)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \oplus H_{(-)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)
$$

onto $\mathcal{A}_{\exp }\left(\boldsymbol{C} \backslash T\left(-K^{\prime}\right)\right)$ and a linear isomorphism of $H_{+}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \oplus H_{-}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$ onto $\mathcal{A}_{0}\left(C \backslash T\left(-K^{\prime}\right)\right.$). Therefore the Fourier transformation \mathcal{F} gives the following commutative diagrams:

and

Theorem 3. The Fourier transformation \mathscr{F} gives the linear isomorphism

$$
\begin{equation*}
\mathscr{F}: H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \rightarrow H_{T\left(-K^{\prime}\right)}^{1}\left(\boldsymbol{C} ; \mathcal{A}_{\mathrm{exp}}\right) \tag{22}
\end{equation*}
$$

and a topological linear isomorphism
(22')

$$
\mathscr{F}: H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \rightarrow H_{T\left(-K^{\prime}\right)}^{1}\left(C ; \mathcal{A}_{0}\right)
$$

so that the diagrams (21) and (21') become commutative.
Corollary. The canonical mapping

$$
\begin{equation*}
H_{T\left(-K^{\prime}\right)}^{1}\left(C ; \mathcal{A}_{0}\right) \rightarrow H_{T\left(-K^{\prime}\right)}^{1}\left(C ; \mathcal{A}_{\mathrm{exp}}\right) \tag{23}
\end{equation*}
$$

is a linear isomorphism.
The Fourier transformations \mathscr{F} (22) and (22') can be defined more concretely: For $T \in H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$, we choose $T_{+} \in H_{(+)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$ and $T_{-} \in H_{(-)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$ such that $T=-T_{+}+T_{-} . \quad$ We define

$$
\Phi(\zeta) \in \mathscr{A}_{\text {exp }}\left(C \backslash T\left(-K^{\prime}\right)\right)
$$

putting

$$
\Phi(\zeta)= \begin{cases}\mathscr{F} T_{-}(\zeta) & \text { for } \operatorname{Im} \zeta>-a \\ \mathscr{F} T_{+}(\zeta) & \text { for } \operatorname{Im} \zeta<-b\end{cases}
$$

The function Φ depends on the choice of (T_{+}, T_{-}). If $T=-T_{+}+T_{-}$ $=-T_{+}^{\prime}+T_{-}^{\prime}$, then $T_{+}-T_{+}^{\prime}=T_{-}-T_{-}^{\prime}=S \in H_{(0)}^{\prime}\left(R ; K^{\prime}\right)$. Therefore the class $[\Phi]$ of Φ modulo $\mathcal{A}_{\text {exp }}(\boldsymbol{C})$ is well defined by $T \in H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$. By the definition, we have $\mathscr{F} T=[\Phi]$.

Remark. For $\psi \in \mathcal{A}_{\text {exp }}(T(-\infty,-b)) \quad\left(\right.$ resp. $\left.\psi \in \mathcal{A}_{\text {exp }}(T(-a, \infty))\right)$, we put

$$
\psi_{0}(\zeta)=\left\{\begin{array}{lll}
0 & (\text { resp. } \psi(\zeta)) & \text { for } \operatorname{Im} \zeta>-a \\
-\psi(\zeta) & (\text { resp. } 0) & \text { for } \operatorname{Im} \zeta<-b
\end{array}\right.
$$

[ψ_{0}] denotes the class of ψ_{0} modulo $\mathcal{A}_{\text {exp }}(C)$. Then the mapping ψ $\mapsto\left[\psi_{0}\right]$ is injective. We will consider by this mapping

$$
\mathcal{A}_{\exp }(T(-\infty,-b)) \subset H_{T\left(-K^{\prime}\right)}^{1}\left(C ; \mathcal{A}_{\mathrm{exp}}\right)
$$

and

$$
\mathcal{A}_{\exp }(T(-a, \infty)) \subset H_{T\left(-K^{\prime}\right)}^{1}\left(C ; \mathcal{A}_{\text {exp }}\right)
$$

By this convention the two definitions of $\mathscr{F} T$ for $T \in H_{(+)}^{\prime}\left(R ; K^{\prime}\right)$ or $H_{(-)}^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$ are consistent.
§3. Cohomological representation of tempered ultrahyperfunctions. We shall define an inner product of $H_{T\left(-K^{\prime}\right)}^{1}\left(C ; \mathcal{A}_{\text {exp }}\right)$ and $\mathscr{S}_{\mathfrak{E}}\left(T\left(-K^{\prime}\right)\right)$. Let $\left.[\Phi] \in H_{T\left(-K^{\prime}\right)}^{1}\right)\left(C ; \mathcal{A}_{\text {exp }}\right)$ and $\varphi \in \mathfrak{S}_{\mathcal{E}}\left(T\left(-K^{\prime}\right)\right)$ be given. As Φ belongs to $\mathcal{A}_{\text {exp }}\left(C \backslash T\left(-K^{\prime}\right)\right.$), there exists, by the definition, $A \geqslant 0$ such that for any $\varepsilon>0$ there exist an integer p_{0} and a constant C such that

$$
|\Phi(\zeta)| \leqslant C\left(1+\left|\zeta^{p_{0}}\right|\right) \exp (A|\operatorname{Im} \zeta|) \quad \text { for } \zeta \in C \backslash T\left(-K_{\varepsilon / 2}^{\prime}\right) .
$$

For the function φ, there exists $\varepsilon_{0}>0$ such that $\varphi \in \mathscr{S}_{\complement}\left(T\left(-K_{\varepsilon_{0}}^{\prime}\right)\right)$. Therefore, the integrals

$$
\begin{align*}
-\int_{\partial T\left(-K_{\varepsilon}^{\prime}\right)} \Phi(\zeta) \varphi(\zeta) d \zeta & =\int_{-\infty}^{\infty} \Phi(\xi+i(-a+\varepsilon)) \varphi(\xi+i(-a+\varepsilon)) d \xi \tag{24}\\
& -\int_{-\infty}^{\infty} \Phi(\xi+i(-b-\varepsilon)) \varphi(\xi+i(-b-\varepsilon)) d \xi
\end{align*}
$$

are defined for α sufficiently small positive number ε. They are independent of ε because of the Cauchy integral formula.

If $\Phi \in \mathcal{A}_{\text {exp }}(C)$, then the integrals (24) are zero by the Cauchy integral theorem. Hence we may define

$$
\begin{equation*}
\langle[\Phi], \varphi\rangle=-\int_{\partial T\left(-K_{!}^{\prime}\right)} \Phi(\zeta) \varphi(\zeta) d \zeta . \tag{25}
\end{equation*}
$$

Theorem 4. Suppose $T \in H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$ and $\varphi \in \mathscr{S}\left(T\left(-K^{\prime}\right)\right)$ be given. Then we have

$$
\begin{equation*}
\langle\mathscr{F} T, \varphi\rangle=(T, \mathscr{F} \varphi), \tag{26}
\end{equation*}
$$

where the left term is defined by (25) and the right term is the canonical inner product of $H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right)$ and $H\left(\boldsymbol{R} ; K^{\prime}\right)$.

In fact, the formula (11) in the proof of Theorem 1 gives (26).
Theorem 5 (Cohomological representation of $\mathfrak{S}^{\prime}\left(T\left(-K^{\prime}\right)\right)$). The inner product (25) gives the linear isomorphism

$$
\begin{equation*}
\mathscr{S}^{\prime}\left(T\left(-K^{\prime}\right)\right) \cong H_{T\left(-K^{\prime}\right)}^{1}\left(C ; \mathcal{A}_{e \times x}\right)=H_{T\left(-K^{\prime}\right)}^{1}\left(C ; \mathcal{A}_{0}\right) . \tag{27}
\end{equation*}
$$

The dual Fourier transformation \mathscr{F}_{a} defined in [5] coincides with the above defined Fourier transformation via (27).

In fact, we have by (26) and the definition of \mathscr{F}_{d}, $\langle\mathscr{F} T, \varphi\rangle=(T, \mathscr{F} \varphi)=\left(\mathscr{F}_{d} T, \varphi\right)$.
The Fourier transformation $\mathscr{F}: H^{\prime}\left(\boldsymbol{R} ; K^{\prime}\right) \rightarrow H_{T\left(-K^{\prime}\right)}^{1}\left(\boldsymbol{C} ; \mathcal{A}_{0}\right)$ and the dual Fourier transformation $\mathscr{F}_{a}: H^{\prime}\left(R ; K^{\prime}\right) \rightarrow \mathscr{S}_{2}^{\prime}\left(T\left(-K^{\prime}\right)\right)$ being isomorphisms, we get the theorem.

References

[1] ~[4] are the same as in [5].
[5] Morimoto, M.: Theory of tempered ultrahyperfunctions. I. Proc. Japan Acad., 51, 87-91 (1975).

