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69. Analytic Functions in a Neighbourhood of Boundary

By Zenjiro KURAMOCHI
Department of Mathematics Hokkaido University

(Comm. by Kinjird KUNUGI, M. J. A., May 9, 1975)

Let R be an end of a Riemann surface with compact relative
boundary oR. Let F;(i=1,2,.--) be a connected compact set such
that F,NF;=0: 1%7, {F;} clusters nowhere in R+6R and R—F(F=3F,)
is connected. We call R"'=R—F a lacunary end. If there exists a
determining sequence {8,(p)} of a boundary component p of R such
that inf G(z,p)>6>0,7=1,2, .. and 7B,(p) is a dividing cut, we

2€3Bp ()
say F is completely thin at p, where G(z,p,) is a Green’s function of
R’. If there exists an analytic function w=f(2): 2 € R’ such that the
spherical area of f(R’) is finite over the w-sphere, we say R’ satisfies
the condition S. If there exists a non const. w= f(2) such that C(f(R")
(complementary set of f(R’) with respect to w-sphere) is a set of positive
capacity, we say R’ satisfies the condition B. Then we proved

Theorem ([11). Let R be an end of o Riemann surfacee0,. If F
1s completely thin at p and R'=R—F satisfies the condition S, then the
harmonic dimension (the number of minimal points of R over p)<oo.

In this note we show the above theorem is valid under the condition
B instead of the condition S. Since if the spherical area of f(R’) <oo, we
can find a neighbourhood %,,(p) of p such that C(f(B,,(p) NR)) is a set
of positive capacity, the result which will be proved is an extension of
the theorem.

Let R ¢ 0, be a Riemann surface. Let V(z) be a positive harmonic
function in R—F such that V(2)=co on F, V(2) is singular in R—F
and D(min (M, V(2))) < Ma for any M < oo, « is a const., we call V(z) a
generalized Green’s function (abbreviated by G.G.), where F is a set
of capacity zero. Then

Lemma 1. 1) Let V(2) be a G.G. in R. Then there exists a
cons. a such that D(@min (M, V(2))=M«a and I %V(z)ds:a: Cu
Cu

={zeR: V(@=M} for any M<oco. 2). Let G(z,p)(t=1,2,--.) be @
Green’s function and {p;} be a sequence such that G(z, p;) converges to
G, {p}). Then G(z,p) and Gz, {p.}) are G.G.s such that

I 2 Gz, p)ds=2r and f 0 G, (ppds<2r. (1)
cx N cx N
Let R'={ze R: G(z,p)>5} and let R’ be the symmetric image of R’
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with respect to 0R'={z ¢ R; G(z,p,)=0}. We have a doubled surface
R’ by identifying R’ with its image. Then R’c0,. Let {p;} be a
divergent sequence such that G'(z, p;) converges. In this case we say
{p;} determines an ideal boundary point p: G'(z, p)=lim G'(z, p,), where

G'(z,p;) is a Green’s function of R’. We denote by 4(R’) all ideal
boundary point. Then G-Martin’s topology is introduced on R’'=R’
+ 4(R") with distance as follows:
Gip) G,y ,
1 + G(Z, pi) 1 + G(Z, pj)
where D, is a compact disc in R’.
By (1) we define G'(p, q) for p and g e R’ by
¢, 0=lim [ 6026 pds,
v u(p) on

M=o 2r

0(ps, Py) = sup

2€Dy

where V(p)={z e R": G'(z,p)>M}. Then G'(p, @) is lower semicontinu-
ous in B’ X R’ and
Lemma ([2]). Let F={zec A(R): G'(2,p)=0}. Then
D(F)=1/lim inf —1_ 3" G'(p,p)=0 for any 5>0.

n=o0 pi,pj€F 0, ti<{

We suppose Martin’s topology M-top. is defined on R with kernels
K(z,p).s. Let G;={zeR: G(2,0)>8} and G,(M) be its closure with
respect to M-top. Then

Lemma 3 ([3]). Let V(2) be a positive harmonic function in R and
a G.G.in R. Then

V)= K@ pdpm),
where p is a canonical mass on \_J 4,(M)N G,(M) and 4,(M) is a set of
>0

minimal boundary points of R.

Let 2 be a domain in the w-sphere such that CQ is a set of positive
capacity. Let G*(w, ) be a Green’s function of 2. We define G“(p, q)
for p and g e 2 by G*(», @) =lim G*(§,7). Then G¥(¢,p)=G"(p, q) and

&—p
79
G¥(w, p) is upper semicontinuous on 2 X 2 and
Lemma 4. Let F be a closed set on Q. If
D(F)=1/lim inf —1_ 37 G*(p,, p,)=0,
i<

n= pipj€F ,U, i 9
i=

F is a set of (logarithmic) capacity zero.
Lemma 5 ([8]). Let U(w) be a potential such that U(w)

- f G (w, p)duw). If j dp(p)< oo and Uw)=aG®w,s): a>0, then u

has mass =« at s.
Let R and R be Riemann surfaces RCR &0,. We suppose Martin’s
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topologies M and M -top s are defined over B and R with kernels {? (z,p)
and K(z,p). Let G(z,7p,) be a Green’s functio~n of R. Let 4,(M) and
4,(M) be sets of minimal boundary points of K and R, p be a boundary
component of £ and F(p) be the set points (relative to M or M top. s)
lying over p. Let Fy(a)={z: lei_IHG(z, Do) =8}, where a=M or M. Then

Lemma 6.

F,(M) N 4,(M) NV () = Fo(M) N 4(M) NP (),
where =~ means one to one mapping.

Let RCE 0, be Riemann surface. Let w=f(z):2eR be an
analytic function of bounded type. We shall define another Riemann
surface R*. We can find a segment S in R such that there exists a
neighbourhood v(S) of S f(z) is univalent in v(S). Let & be a leaf
with projection=f(R). Let Sg be a segment in & with projection S.
We conneet S and Sg crosswise. Then we have a Riemann surface
R*¥*=(F —-8Sg¢)+(R—-S8)+S and R—ScR*. Put f(x)=proj. z for
2eF—Sg. Then f(2) is analytic continuation of f(z) into F— S« and
we can suppose w= f(z) is defined in R*. So long as we consider the
behaviour of f(2) near the boundary of R, we can use R* instead of
R. Let 05 be the relative boundary of & which is clearly=6(f(R)) in
the w-sphere. Let u(z) be a harmonic measure of 0% in R*. Then
by Be 0, w()<1in R*. Let Uw)=2 u(z,): 2z € R*, f(2;)=w. Then

Lemma 7 ([1]). Uw)=1.

By use of Lemma 7 we have

Theorem 1. Let RCR & 0, be Riemann surfaces and let w= f(z)

be an analytic function of bounded type in B. Then

D) Let 22>peR and z.e G={zc R: Gz, p)>3). Then f(z)
—a uniquely determined point denoted by f(p) and there exists a
uniquely determined connected piece w(p) such that w(p) s z; for i=i(r)
lying over |[w— f(p)|<r for any r>0.

2) Let z—spe 4,01 : Gz, p)>5>0. Then f(z)— f(p) and
there exists uniquely determined connected piece w(p) such that z; € w(p)
for i=1i(r) for any r.

Let

AUMD), &) ={w: w=F®): pe 4,00 NG}, A4MD,d)
={w:w=[(p): pe (M) NGM)}
and
AUGD N GD)={w: w=F(p): € AM) N G,(M)}.
Then we have by Lemmas 2, 4 and Theorem 1

Theorem 2. A,(M), 5 CAUM), 5 AUDM),s) and AUM),?)

is a closed set of capacity zero for any 6>0.
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Let u(p, M) =Tm u(2) and u(p, M)=1im u(z). Then by Lemma 7 we have
23D z};p

Theorem 3. 3 u(2)+ 3 u(ps, M)<1 and X u(z) + 3 u(p;, M)<1,
where z; € R and p; Al(M) FR)=Ff(p)=w and z; ¢ B ;€ 4,(M).

Let RCR be a lacunary end. It is desirable to formulate the
behaviour of analytic functions with respect to J-top over E not to
M-top over R, to discuss the relation between the existence of analytic
functions and the structure of 4(J), the boundary of . Let p, and
p, be points in A(M). If there exists a sequence of curves
{r,} »=1,2,...) with two endpoints 2! (:=1,2) such that =z

M . ~
—;, inf G(z, p,) >¢,>0 and I',—boundary of R, we say p, and p, are
z2ely

chained. Suppose f(z) is bounded type. Then by Theorem 2 we see
F(p)=f(p,) for two chained points in 4,(M). Suppose R is an end of
a Riemann surface and F' is completely thin at p, then we see easily
any two points p, and p, in 4,(0) NV (») are chained and f(p)=f(D,).
On the other hand, we can find a number %, such that Rn., 2 p, and

there exists a const. K such that u(z) = —fl{_G(z’ P,) in R—~l’~3n0 and wu(p, M)

S for ped(M)NP(p), where {Rn} is an exhaustion of R. Let

pi =1,2,---,%) be a point in (MNP (p). Then f(p)=r(p)="-

and u(p)z-2. By Theorem 8 X u(p, M)<1. Hence i, Thus
o

we have following

Theorem 4. Let B be an end and F be completely thin at p. If
there exists an analytic function w= f(2) of bounded type in R—F,
then 4 (M) nr (p) consists of at most a finite number of points.

Let R=E—F be lacunary end. Suppose 4,(/)NG,M)NF(p)
=4,(M) N G,,(M)NF(p) for any & <5. Then we have by Lemma 5 we can
find a number §,>0 such that

4,(M) NGy (M) NP (p)=4,(M) N Gy, (M) NP (p) for any & <4,
and
{w=7®): p e 4, NG} ={w=f(P): p e 4,(M) N G, (M) N (p)}.
Let {2;} be a sequence in R such that G(z;, p)) > >0 and z;—p. Then

we can find a subsequence {z;} of {#;} such that z;ip edMNG, (M)
Nr(p), whence f(z;)—f(»). Now by G(z;, v,) > ¢, K(2,p) is a G.G and
by Lemma 3

K, p)=| K(z, )dp(a),

where y is a canonical mass on 4, (M) NG, (M)NF(p). Let G*(w,w’) be
a Green’s function of f(R). Then by G(z, 2;) <G*(f(2), f(z;)) we have
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K, q)g—C*'—"’ifi%)’—&’2 for ¢ & 4,(M) N G, (D),

0
whence

K, p)gai j G(f@), F @)@ <oo by j du)<1.

Now the mapping w=f(®): p e AM)NG,(M) is continuous. There
exists a mass v on

A={w: w=f(q): ¢ e 4,(M)NG, (M) NV ()}
such that

j G*(F(2), (@) dp(q) =j Go(F(2), (D).

Let E*K(z, p) the lower envelope of superharmonic functions in f(R)
larger than K(z,p). Then

E*K(z, 1) =aG"(w, (D)< j Go(w, HAuE).

This means f(p) e A. Hence we have
Theorem 5. Let R=R—F be a lacunary end. 1 f there ewists a
const. such that
4UDNGAD T ()=4IDNG,MNP(E)  for &' <.
Let w=f(2): ze R be an analytic function of bounded type. Then
U N G NB.M)={w=s®): p e 4,01 NG N7 (p)},

0 n
where G,={z € R: G(z, py) > ¢} and {B,()} is a determining sequence of
pin K.
Applying this theorem to the case F' is completely thin at p, then

.L>J0 N S(G.NBu(0)=F@)=S (D), - - - =S (Dy,).

n
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