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108. On the C~.Goursat Problem for 2nd Order Equations
with Real Constant Coefficients

By Yukiko HASEGAWA
(Comm. by Kosaku YO0sIDA, M. J. A., Sept. 12, 1975)

§ 1. Introduction. We consider the following Goursat problem

1.1)-(1.2).
1.1 0,0, U= j}; - 0y ;,010505u, teR., zec R, yc R
i+j+la
1+ <1
where a,,, are real constants
0, z, ) =0(®, y) € &y
1.2) u@, 0, =1, y) €&,y t>0
(0, ¥) =0, ¥) (compatibility condition).

We notice that, t=0 and =0 are characteristic hypersurfaces of
the equation (1.1). We say that the Goursat problem (1.1)—(1.2) is well
posed for the future in the space &, if for any given Goursat data (1.2),
there exists a unique solution u(¢, x, ) € &4y, >0, which takes the
given Goursat data at t=0 and x=0.%

Let us consider the characteristic equation (considering the lower
order terms) of (1.1).

= G5 A", &eR' peR".
1<i7-;l-_':7' ;4%142

Then we have

(1.3) A= Z aojdf"’?“/(&" Z a'ma77a>-
J<1, 1<7+ lal<3 laT=1

Our purpose is to prove the following

Theorem 1. The necessary and sufficient condition for the &-
wellposedness of the Goursat problem (1.1)-(1.2) in the neighborhood
of the origin is that 2 in (1.3) remains bounded when |&|+|y| remains
bounded.

Remark 1. We can rewrite (1.1) in the following.
A4 (8:— (@0, + 0y, + - - - +@ndy, +a)HO,— (0,0, + - - - + 0,8, + b }u

= > c,05u.

laT<2
The necessary and sufficient condition in the theorem 1 is equivalent
to ¢,=0 for |a|>1.

§ 2. Proof of Theorem 1. At first we consider the following
fairly simple equation;

*  According to Banach’s closed graph theorem, if the Goursat problem is
&-wellposed then the linear mapping (p,¥)—u is continuous from Ez,XE;y into
Einye
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2.1) 9,0, u=adyu+ bd,u+cu ye R.
We shall show

Proposition. If the Goursat problem (2.1)-(1.2) is &-wellposed in
the neighborhood of the origin, then we have a=b=0.

For the proof of this proposition, we use the following lemma on
Bessel functions (see [1] p. 526).

Lemma. The Bessel function

—y (=#/Y"
2.2) Jo(2) —go I

has the following representation for large |z| inside an angle —én‘ +0
<arg z<—;—n—5 ©6>0),

2.3) Jo(2)= «/ 271rz (ete==% . g=its=x/) 1 0(|2|"2").

The proof of Proposition. At first we suppose a+0. We can
reduce (2.1) to the following form:
2.4) 0,0, u=0ad;u+ cu.
Let us show that (2.4) is not £&-wellposed. We seek for the solution of
(2.4) which has the form u=v(t, x)e*’? (where 5 is real and positive).
Then we have

(2.5) 0,0,v=—an’v+cv.
We impose the data (2.6) on v.
(2.6) v(t, 0)=2(0, x)=1.
The function

_v {(=ya+o)xt}*
2.7 v(t, %) ,;,, Q%

satisfies (2.5) and (2.6), therefore u(t, x) is a solution of (2.4) and has
the following Goursat data (2.8).

2.8) u(0, 2) =u(t, 0)=e'v,

For —ax>0 and for sufficiently large 5, we have

W(=ra+)wtV* _ 1 sriarorsi 1. o-vmaros
2.9) o@2)> ,go @1 -E(e ~rarast 4 g~ V=ataat),

Hence

(2.10) Ju(t, x, y)]>-;—e~/<—w2+cm for —ax>0 and large 7.

(2.8) and (2.10) show that the continuity from data to solution can not
be held. Then “E-wellposedness=>a=0" has been proved.

Next, we suppose =0, b2:0 in (2.1). In this case we can reduce
(2.1) to the following
2.11) 8:0,u=D00,u.
In the same way as the case a0, u=v(t, x)e'*? is a solution of (2.11),
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where v is the following

_ (ibatp)®
2.12) v_é TN
From (2.2) and (2.12), we have
(2.18) v(t, ®) =J(2v — Dapte ) for —bx>0.
In view of Lemma we have
(2.14) [v(t, )| > constant. /e v2valnt for large .

So in the same way as the case a0, we have “£-wellposedness=>b=0".
The proof of proposition thus completes.

The proof of Theorem 1. In view of Remark 1, we consider (1.4)
instead of (1.1). If ¢,=0 for |@|>1 in (1.4), we have
(2-15) {at_ (alay1 + cee + anayn 'l' a’o)}{aw’—' (blayl + .-+ bnay,, + bo)}u

=CU.
Let us consider the following change of independent variables.
T=t
(2.16) X=x

Yi=yi+ait+bix ’£=1,2, RN
From (2.15) and (2.16), we have

2.17 @r—ap)(@x—bu=-cu.

Let

(2.18) U= 0T +oXg

We have

2.19) 070 ¢l = &@.

Considering (2.16) and (2.18), we rewrite (1.2) in the following
?7’|T=0=¢(X’ Y)

2:20) i il

By successive approximation we have a unique C=-solution of the
Goursat problem (2.19)-(2.20).

To prove that the condition in Theorem 1 is necessary, changing the
independent variables and unknown function, we can reduce Theorem
1 to Proposition.

Remark 2. When the hypersurface =0 is not characteristic, i.e.
the term 4% appears in the right hand side of (1.1), we have some
results which are analogous to Theorem 1.

§ 3. A result concerning system. Let us consider the following
Goursat problem

1 0
3.1) . |ow—37 A, u—Bu=0  teR., zeRr
1 k=1
0 0
(3.2) {ui(o, x) =u,(%) 1=1,2,...,N—1
' Uy(ly D)o o=y (t, @) =X X, « - -, )

where A; and B are matrices of order N, each components are Cj,
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functions, and (N, N) component of A, is 1.
We consider the following characteristic polynomial;
1 0

(3.3) det '-.1 z_ki:lAk(o,O)ek =b,(E)A 4 -+ b y(8).

0 0

Our result is the following.
“Assume that, for some & (#0) real, b,(")#0 and the polynomial
D(EYAY 14 ..+ by(EY) has a mon real root, them Goursat problem
(8.1)-(3.2) is not &-wellposed in any small neighborhood of the origin’.
The proof of Remark 2 and § 3 will be given in a forthcoming paper.

At the end the author wishes to thank Prof. Mizohata for his
valuable suggestions.
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