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145. Eisenstein Integrals and Singular
Cauchy Problems

By Robert W. CARROLL
University of Illinois at Urbana-Champaign
(Comm. by Késaku Yosipa, M. J. A., Oct. 13, 1975)

1. The classical Euler-Poisson-Darboux (EPD) equations of
Weinstein (see e.g. [15]), and various formulas arising in their solution,
are known to possess group theoretic content, and various other analo-
gous classes of singular Cauchy problems also have been studied from
this point of view (ef. [4]1-[6], [11]). We will discuss here some aspects
of the general situation in the context of harmonic analysis on sym-
metric spaces (cf. [71-[10], [12]-[14] for notation). Thus let G be a real
connected noncompact semisimple Lie group with finite center and K
a maximal compact subgroup so that V=G/K is a symmetric space of
noncompact type. Let g~=k~+p be a Cartan decomposition, aCp a
maximal abelian subspace, and we will suppose that dim a=rank V=1.
Let G=KAN denote the related Iwasawa decomposition with com-
ponents g==~k(g) exp H(g)n(g) and write g, for the standard root sub-
spaces in g~ (here we have positive roots « and possibly 2a). Set p=
1/2) > m,a for >0 where m,=dim g, and pick an element H, € ¢ with
a(H,)=1 while setting a,=exp tH,; for p € R=a* we put u(tH)=pt and
then p=1/2m,+m,,. We identify (0, co) with a Weyl chamber a, Ca.
Let M (resp. M’) be the centralizer (resp. normalizer) of A=exp a in
K so that the Weyl group (of order w=2)is W=M’/M and the boundary
of Vis B=K/M.

Given now v=g¢gK ¢ V and b=kM ¢ B one writes A(v, b)=—H (9" 'k)
and the Fourier transform of fe LAV) is defined by

(1.1) f(#: b)= j f(v)e(i/l+p)A(v,b)dv
14
for pea* and b e B. The inversion formula is
(1_2) f(’U):% I f(ﬂ’ b)e(-zwp)A(v,b) |C(y)|_2d/,tdb
a*XB

where c(p) is the standard Harish-Chandra function (and w=2). Now
a*/W =~a* and one can write

(1.3) L= [ | S, le)|dy

1.4) j[/,= {@,,('l)): IB e(—t,,+p>A(v,b)¢(b)db}
for ¢ € LX(B). The quasiregular representation of G on LA(V), defined
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by L(g)f(®)=f(¢g~'v), decomposes in the form L=J. , L, |c()|*dy
a*/W

where L, acts in 4, by the same rule as L with L, irreducible and
unitary.

We recall here also the definition of the mean value of a function
f over the orbit of gz(h)=gu under the isotropy subgroup I,=gKg™!
at v=n(g9) (n: G—G/K is the canonical map). Thus, noting that M*f
=M*f, one can write

(1.5) (MMF)(w) = jK F(gkr(h))dk=F(u, v)

and the so called Darboux equation is D, F =D F=(M"(Df))(v) where
D e D(G/K). The zonal spherical functions on G are defined by

(1.6) 3(0)= [ e HWO
J K

for 4 € a* and one can evidently write ¢,(¢9) =¢,(9K) where it is known
that ¢_,(97)=¢,(9). It is easy to show that the Fourier transform of
Mr=M*e&(V)is FM*=¢,(h). We mention also that there are natural
polar coordinates in a dense submanifold of V arising from the decom-
position G=KA ,K, A, =expa,, provided by the diffeomorphism (kM, )
—kaK:BxA,—V. Thus the polar coordinates of n(9)=n(k,ak,)ecV
are (k,M,a). Further if h=~Fkak with a € A, then (M"f)(v)=(M*f)(v)
=(M*f)(v).

2. The objects of interest in a generalized EPD theory are the
radial components of a basis for the 4/, spaces of (1.4), multiplied by
a suitable weight function. Now D(G/K) is generated by a single
Laplacian 4 and we look at the radial component 4z of 4, passing this
from the coordinate ¢ in a, ¢ A to 7(4) in an obvious manner, and set-
ting M,=M,, with FM,=¢,(a,), one has an eigenvalue equation (cf.

[14])
@.1) [D}+ (m,+m,,) coth tD, +m,, th tD;1p,

[+ (/2 1,05, =0
where D;=d/dt and th=tanh. The solution of (2.1), “nice” at t=0, is
2.2) Ro(t, )=, (exp tHy) =F (5, p, r —sh’t)
where &= (1/4)(m,+ 2m,, + 2iy), p=@1/4(m,+ 2m,, — 2ip), and 7
=Q1/2)(m,+m,,+1). The idea now is to embed R(¢, W) in a “canonical”
sequence of “resolvants” R™(t, 1) (m could be a multi-index) such that
the resolvant initial conditions R™(0, w=1 and Ié;"(O, )=0 are satisfied
while the associated singular differential equations for the R™ are
“split” by certain recursion relations as indicated below.

First we recall that a basis for L*B) can be taken in the form of
functions kM— > w:, r(Hwi),, 1<i<d(z), where rz=(r,V,) (with
dim V.=d(z)) runs over the set T of inequivalent irreducible unitary
representations of K such that dim V¥ =1 (V¥ CV, is the set of elements
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fixed by M). Here one knows dim V¥=1 or 0 and w; is a basis vector
for V¥ with {w;}, 1<i<d(z), and orthonormal basis for V., under a
scalar product {, >.. These representations can be parameterized as
follows (see [9] for references). If m,,=0, T ~{(p, @)} ¢=0; if m,,=1,
T ~{(p, )} with pe Z, and with (p,q) e Z, XZ where p+qe2Z,; and
if m,,=8 or 7, T ~{(p, @)} with (p,q@) € Z, XZ, where p+qe2Z,. The
proof of the following theorem results from [9].

Theorem 1. The radial components of basis vectors in H, can be
expressed through Eisenstein integrals in the form

v (@ K)= jK eir PR s 7 (s, dk

g+p+q 4+p—q+l—m2a
2 2

)

2.3) =c_,.th? t ch™* tF(
p+ T2 e t)

where {=ip+p and c_,. is a constant. Setting d,=—p{»+m,+m,,
—1D+q(g+m,,—1) and d,,=—4q(q+m,,—1) the function V=+_,.
satisfies
@.4) Voo + (M, +My,) coth tr, +m,, th Ty,
=[d, sh~%t+d,, sh™? 2t + p*+ 14 =0.

3. We consider first the case m,,=0 and m,=m. These situa-
tions involve the Lobadevskij spaces (e.g. G=S0,83,1) and K=S0(3)
with m=2) and the standard case of G=SL(2, R) and K=S0(2) with
m=1. Resolvants were found in [2]-[6], [11] by different methods
and expressed in terms of associated Legendre function or hypergeo-
metric functions of other arguments. The results can easily be put
into the present format as follows. We have p=m/2, {=ip+m/2,
d,=—ppm+m—1), and d,,=0 while =~ (p, 0).

Theorem 2. Resolvants for the case m,=m and m,,=0 are given
by

Ret, y=czL, sh? ty_, (a,K)

=ch‘P“‘F(“2'p, Z+§+1,p+ mgl , th? t)

I m )24+ 1/2)20+mENE e
= (p+ s/}lp:-l_m/Z/—JZt P iup—l/z/z e (Ch t)'

3.1

These satisfy the resolvant initial conditions as well as the differential
equations and splitting recursion relations below.

A A 27 A
(3.2)  Ry,+(@2p+m) coth tRy+ [p(p+m)+ 2+ (%) ]RP:O

st poems e (2]
oo tml p(p+m)+ ¢+ 3
8.4) R?+(2p+m—1) coth tR?=(2p+m—1) csch tR»-

(8.3) Rr=
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The recursion relations can be found group theoretically by con-
sidering a full set of basis elements in the .4/, spaces or simply by known
recursion formulas for the associated Legendre functions. Their com-
position, with suitable index changes, yields (3.2) and this is what we
mean by splitting (3.2). We remark in passing that resolvants are not
unique since if we multiply R™ by a function ¢n € C* such that ¢,,(0)=1,
0,(0)=0, and ¢,=1 for example then we would simply obtain different
equations (8.2)—(3.4) while the resolvant initial conditions are preserved
and for m=0 there arises again the R° of 2.2).

4. In the case when m,,=1 we take m,=m so that d,,= —4¢? and

d,=—p®+m)+q¢* with p= % +1. We choose resolvants again in the

form
Roq(t, w=cI, . sh?ty_, (a,K)

=ch™?"% F(x-l— p;-q , X+ p;q , Y, th? t)

_”,

4.1

where 7=(1/2)(iu+2+1)=¢/2 and y=p+ " +1. Using (2.4) one
obtains
R4 [(2p +m+1) coth t+th t]R»e

(4.2) + [10(10+m+2) +4+ (%"' 1)2+ q* sech’ t] Rra=0.

Theorem 3. Resolvants for the case m,=m and m,,=1 are given
by (4.1) and satisfy (4.2) along with the resolvant initial conditions.
There are various splitting recursion relations according as p or ¢
change by 2 or (p,q) by (£1, +1). We list these in the form

o[22

—-p——2x] th tR»e

Y
4.3 _
B ot )
¥ (y+1)
x sh?t th tRr+»e

R»e=2(y—1) coth ¢ sech? tR?-2¢

O

Yy—2

— q] th t] Rra,

(4.5) I?{”‘1=q th tﬁp’q+3<m+ p;—q)(x_!_ p;q —-y) sh tRe+hat1
)

“.4) + [2(1 —y) coth ¢+
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(4.6) Rpi=_—qthtR»?—2(y—1) coth tR?9+2(y—1) csch tR?-Ha-!

4.7 Rri=_qthtRr— E(x+————p_z'q>(y—w— p;—q) sh tRr+1.a-1
Yy

(4.8) 1§gw=q th t@l”q——Z(y——l) coth tR7¢ 4+ 2(y—1) esch tR?-1a+!
Rpa=qth tRre

4.9) 2cotht ( p+q>< P—q )I?M 5
— 0 Ro.a+e
+q+1\oc+2 vt y)( )
Rre=_—qth tRr
(4.10) : 2cotht (x+ p—q)<y_x_ p+q>(ﬁp,q_ﬁp,q_z).
q—1 2 2

The recursion relations are obtained using the formula d/dzF(a,
b,c,2)=(ab/c)F(a+1,b+1, c+1,2) and various contiguity relations for
hypergeometric functions. The cases m,,=3 or 7 can be treated in a
similar manner. For the connection of the Fourier theory to the as-
sociated singular Cauchy problems see also [1]-[6], [11].
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