No. 10]

156. On the Difference between r Consecutive Ordinates of the Zeros of the Riemann Zeta Function

By Akio FUJII

Department of Mathematics, Rikkyo University, Tokyo (Comm. by Kunihiko KODAIRA, M. J. A., Dec. 12, 1975)

§ 1. Introduction. Let γ_n be the *n*-th ordinate of the zeros of the Riemann zeta function $\zeta(s)$ satisfying $0 < \gamma_n \leq \gamma_{n+1}$. Here we are concerned with the following problems.

(i) To estimate $S_{r,k}(T) = \frac{1}{N(T)} \sum_{T < \tau_n \le 2T} d(\gamma_n, r)^k$ for integral $k \ge 1$ and $r \ge 1$, where N(T) is the number of the zeros of $\zeta(s)$ in 0 < Re s < 1, $0 < \text{Im } s \leqslant T$ as usual and $d(\gamma_n, r)$ is $(\gamma_{n+r} - \gamma_n)/r$.

(ii) To estimate the number $N_r\left(\frac{C}{\log T}, T\right)$ of γ_n in $T < \gamma_n \leq 2T$

satisfying $d(\gamma_n, r) \ge C/\log T$.

As to (i) we have shown in [1], [3] that

$$S_{1,2}(T) \ll (\log T)^{-2}.$$

On the other hand the following result is announced in Zentralblatt [4]; $(2k) + 2^{2k}(2k + 1)(1 - n \log 4)^{k}$

$$S_{1,2k+1}(T) \ll \frac{(2k)! 2^{2k}(2k+1)(\log \log T)}{k! (\log T)^{2k+1}}$$

for integral $k=o (\log T)$. Here we shall prove the following

Theorem 1. Let $T > T_0$. Then for k in $1 \le k \ll (T \log T)^{2/3}$ and r in $1 \le r \ll k^{3/2}$, we have

$$S_{r,k}(T) \ll \frac{(Ak)^{3k^2/(2k+1)} (\log (3+k))^k r^{-2k^2/(2k+1)}}{(\log T)^k}$$

where A is some positive absolute constant.

As to (ii) we have shown in [1], [3] that

$$N_r\left(\frac{2\pi(1+a)}{\log T}, T\right) \gg N(T) \exp\left(-(\log \log C)^{1-\epsilon}\right)$$

for $C > C_0$, integral r less than A $(\log C)^{1/2} (\log \log C)^{1/2+\epsilon}$ and

 $a = (A (\log C)^{1/2} (\log \log C)^{1/2+\epsilon} - r) / (C + A (\log C)^{1/2} (\log \log C)^{1/2+\epsilon} - r),$

where A's above (and also in this paper) are some positive absolute constants and ε 's are arbitrarily small positive numbers. Here we shall prove

Theorem 2. For
$$T > T_0$$
, $C > C_0$ and r in $1 \le r \le T \log T C^{-1}$, we have $N_r \left(\frac{C}{\log T}, T\right) \le N(T) \exp(-A(rC)^{2/3} (\log rC)^{-1/3}).$

§2. Proof of Theorem.

2-1. To prove our theorem we use the following

Lemma 1.

$$\int_{T}^{2T} (S(t+h) - S(t))^{2k} dt = \frac{(2k)!}{(2\pi)^{2k} k!} T (\log (3+h \log T))^{k} + 0((Ak)^{4k} T (\log (3+h \log T))^{k-1/2})$$

uniformly for positive h, integral $k \ge 1$ and $T > T_0$, where we put $S(t) = \frac{1}{\pi} \arg \zeta(1/2+it)$ as usual.

π

(Cf. Main Theorem in [2].)

2–2. For convenience we put

$$S_{r,l}(h,T) = \frac{1}{N(T)} \sum_{\substack{T < \tau_n \leq 2T \\ a(\tau_n,r) \ge h}} d(\gamma_n,r)^l$$

for positive h and integral $l \ge 1$. Using Lemma 1 we shall prove first

Lemma 2. For any integral $l \ge 1$, integral $k \ge 1$, $T > T_0$, positive $h \ge (\log T)^{-1}$ and integral r in $1 \le r \le T/h$, we have

$$S_{r,l}(h,T) \ll \frac{(Ak)^{4k}B(k,l)^{-1}\left(\log (3+rh\log T)\right)^k}{r^{l-1}(\log T)^l(hr\log T)^{2k-(l-1)}},$$

where we put B(k, 1) = 1 and $B(k, l) = (k-1)(k-2)\cdots(k-(l-1))$ for $l \ge 2$.

Proof. We shall prove this by induction. Suppose that $d(\gamma_n, r) \ge h$. Then by the Riemann-von Mangoldt formula ((9.3.2) of [5]), we get

$$\int_{\tau_n}^{\tau_n+r^{-1/2hr}} (S(t+rh/2)-S(t))^{2k} dt \\ \gg \left(r - \frac{rh\log T}{\pi} + 0(1)\right)^{2k} (d(\gamma_n, r) - h/2)r \\ \gg (Arh\log T)^{2k} d(\gamma_n, r)r \quad \text{for } h\log T \ge C_0.$$

We sum each side over γ_n satisfying $T < \gamma_n \leq 2T$ and $d(\gamma_n, r) \ge h$. Then using Lemma 1 we get

$$S_{r,1}(h,T) \ll \frac{(Ak)^{4k} (\log (3 + hr \log T))^k}{(rh \log T)^{2k} (\log T)}.$$

Now suppose that our conclusion is true for l-1. Then for l,

$$\begin{split} S_{r,l}(h,T) \leqslant &\frac{2}{N(T)} \sum_{\substack{T < \gamma_n \leq 2T \\ d(\gamma_n,r) \geq h}} d(\gamma_n,r)^{l-1} (d(\gamma_n,r) - h/2) \\ \leqslant &\frac{2}{N(T)} \sum_{\substack{T < \gamma_n \leq 2T \\ d(\gamma_n,r) \geq h/2}} d(\gamma_n,r)^{l-1} \int_{h/2}^{d(\gamma_n,r)} dh \\ &= &2 \int_{h/2}^{AT} S_{r,l-1}(h,T) dh \\ \ll &\frac{(Ak)^{4k} B(k,l-1)^{-1}}{r^{l-2} (\log T)^{l-1}} \int_{h/2}^{AT} \frac{(\log (3 + rh \log T))^k}{(rh \log T)^{2k - (1-2)}} dh \\ \leqslant &\frac{(Ak)^{4k} B(k,l)^{-1} (\log (3 + rh \log T))^k}{r^{l-1} (\log T)^l (rh \log T)^{2k - (l-1)}}. \end{split}$$

2-3. Proof of Theorem 1. Now for $C > C_0$ $S_{r,k}(T) \ll S_{r,k}(C/\log T, T) + C^k/(\log T)^k$ Riemann Zeta Function

$$\ll \frac{C^{k}}{(\log T)^{k}} + \frac{(Ak)^{3k} (\log (3 + rC))^{k}}{r^{2k} C^{k+1} (\log T)^{k}}$$

Here we choose $C = (Ak)^{3k/(2k+1)} r^{-2k/(2k+1)}$. Then we get our conclusion.

2-4. Proof of Theorem 2. By Lemma 2 we get

$$\frac{C^{k}}{(\log T)^{k}} N_{r} \left(\frac{C}{\log T}, T\right) \leqslant N(T) S_{r,k} \left(\frac{C}{\log T}, T\right)$$
$$\ll N(T) \frac{(Ak)^{3k} (\log (3+rC))^{k}}{r^{2k} C^{k+1} (\log T)^{k}}.$$

Choosing $k = [(r^2C^2/(e^3 \log Cr))^{1/3}A^{-1}]$ we get our conclusion.

References

- A. Fujii: On the distribution of the zeros of the Riemann zeta function in short intervals. Bull. of A.M.S., 81(1), 139-142 (1975).
- [2] —: On the zeros of Dirichlet L-functions. I. Trans. of A. M. S., 196, 225-235 (1974).
- [3] ——: On the zeros of Dirichlet L-functions. II (to appear).
- [4] J. Moser: On a function S(t) in the theory of the Riemann zeta function (to appear in Acta Arith. (10031, Zentralblatt Band 291, 1975)).
- [5] E. C. Titchmarsch: The Theory of the Riemann Zeta Function. Oxford at Clarendon Press (1951).