156. On the Difference between r Consecutive Ordinates of the Zeros of the Riemann Zeta Function

By Akio FuJiI
Department of Mathematics, Rikkyo University, Tokyo
(Comm. by Kunihiko Kodaira, m. J. A., Dec. 12, 1975)

§ 1. Introduction. Let γ_{n} be the n-th ordinate of the zeros of the Riemann zeta function $\zeta(s)$ satisfying $0<\gamma_{n} \leq \gamma_{n+1}$. Here we are concerned with the following problems.
(i) To estimate $S_{r, k}(T)=\frac{1}{N(T)} \sum_{T<r_{n} \leq 2 T} d\left(\gamma_{n}, r\right)^{k}$ for integral $k \geqslant 1$ and $r \geqslant 1$, where $N(T)$ is the number of the zeros of $\zeta(s)$ in $0<\operatorname{Re} s<1$, $0<\operatorname{Im} s \leqslant T$ as usual and $d\left(\gamma_{n}, r\right)$ is $\left(\gamma_{n+r}-\gamma_{n}\right) / r$.
(ii) To estimate the number $N_{r}\left(\frac{C}{\log T}, T\right)$ of γ_{n} in $T<\gamma_{n} \leqslant 2 T$ satisfying $d\left(\gamma_{n}, r\right) \geqslant C / \log T$.

As to (i) we have shown in [1], [3] that

$$
S_{1,2}(T) \ll(\log T)^{-2}
$$

On the other hand the following result is announced in Zentralblatt [4];

$$
S_{1,2 k+1}(T) \ll \frac{(2 k)!2^{2 k}(2 k+1)(\log \log T)^{k}}{k!(\log T)^{2 k+1}}
$$

for integral $k=o(\log T)$. Here we shall prove the following
Theorem 1. Let $T>T_{0}$. Then for k in $1 \leqslant k \ll(T \log T)^{2 / 3}$ and r in $1 \leqslant r \ll k^{3 / 2}$, we have

$$
S_{r, k}(T) \ll \frac{(A k)^{3 k 2 /(2 k+1)}(\log (3+k))^{k} r^{-2 k^{2} /(2 k+1)}}{(\log T)^{k}}
$$

where A is some positive absolute constant.
As to (ii) we have shown in [1], [3] that

$$
N_{r}\left(\frac{2 \pi(1+a)}{\log T}, T\right) \gg N(T) \exp \left(-(\log \log C)^{1-\varepsilon}\right)
$$

for $C>C_{0}$, integral r less than $A(\log C)^{1 / 2}(\log \log C)^{1 / 2+\varepsilon}$ and
$a=\left(A(\log C)^{1 / 2}(\log \log C)^{1 / 2+\varepsilon}-r\right) /\left(C+A(\log C)^{1 / 2}(\log \log C)^{1 / 2+\varepsilon}-r\right)$, where A 's above (and also in this paper) are some positive absolute constants and ε 's are arbitrarily small positive numbers. Here we shall prove

Theorem 2. For $T>T_{0}, C>C_{0}$ and r in $1 \leqslant r \leqslant T \log T C^{-1}$, we have

$$
N_{r}\left(\frac{C}{\log T}, T\right) \ll N(T) \exp \left(-A(r C)^{2 / 3}(\log r C)^{-1 / 3}\right)
$$

§ 2. Proof of Theorem.
2-1. To prove our theorem we use the following

Lemma 1.

$$
\begin{aligned}
& \int_{T}^{2 T}(S(t+h)-S(t))^{2 k} d t=\frac{(2 k)!}{(2 \pi)^{2 k} k!} T(\log (3+h \log T))^{k} \\
& \quad+0\left((A k)^{4 k} T(\log (3+h \log T))^{k-1 / 2}\right)
\end{aligned}
$$

uniformly for positive h, integral $k \geqslant 1$ and $T>T_{0}$, where we put $S(t)=\frac{1}{\pi} \arg \zeta(1 / 2+i t)$ as usual.
(Cf. Main Theorem in [2].)
2-2. For convenience we put

$$
S_{r, l}(h, T)=\frac{1}{N(T)} \sum_{\substack{T\left\langle\gamma_{n} \leq 2 T \\ d\left(\gamma_{n}, r\right) \geqslant h\right.}} d\left(\gamma_{n}, r\right)^{l}
$$

for positive h and integral $l \geqslant 1$. Using Lemma 1 we shall prove first
Lemma 2. For any integral $l \geqslant 1$, integral $k \geqslant 1, T>T_{0}$, positive $h \gg(\log T)^{-1}$ and integral r in $1 \leq r \leq T / h$, we have

$$
S_{r, l}(h, T) \ll \frac{(A k)^{4 k} B(k, l)^{-1}(\log (3+r h \log T))^{k}}{r^{l-1}(\log T)^{l}(h r \log T)^{2 k-(l-1)}}
$$

where we put $B(k, 1)=1$ and $B(k, l)=(k-1)(k-2) \cdots(k-(l-1))$ for $l \geqslant 2$.
Proof. We shall prove this by induction. Suppose that $d\left(\gamma_{n}, r\right) \geqslant h$. Then by the Riemann-von Mangoldt formula ((9.3.2) of [5]), we get

$$
\begin{aligned}
\int_{\gamma_{n}}^{r_{n+r}-1 / 2 h r} & (S(t+r h / 2)-S(t))^{2 k} d t \\
& \gg\left(r-\frac{r h \log T}{\pi}+0(1)\right)^{2 k}\left(d\left(\gamma_{n}, r\right)-h / 2\right) r \\
& \gg(A r h \log T)^{2 k} d\left(\gamma_{n}, r\right) r \quad \text { for } h \log T \geqslant C_{0}
\end{aligned}
$$

We sum each side over γ_{n} satisfying $T<\gamma_{n} \leqslant 2 T$ and $d\left(\gamma_{n}, r\right) \geqslant h$. Then using Lemma 1 we get

$$
S_{r, 1}(h, T) \ll \frac{(A k)^{4 k}(\log (3+h r \log T))^{k}}{(r h \log T)^{2 k}(\log T)} .
$$

Now suppose that our conclusion is true for $l-1$. Then for l,

$$
\begin{aligned}
S_{r, l}(h, T) & \leqslant \frac{2}{N(T)} \sum_{\substack{T<r_{n} \leq 2 T \\
d\left(\gamma_{n}, r\right) \geqslant h}} d\left(\gamma_{n}, r\right)^{l-1}\left(d\left(\gamma_{n}, r\right)-h / 2\right) \\
& \leqslant \frac{2}{N(T)} \sum_{\substack{T<r \leq 2 T \\
d\left(\gamma_{n}, r\right) \geqslant h / 2}} d\left(\gamma_{n}, r\right)^{l-1} \int_{h / 2}^{d\left(\gamma_{n}, r\right)} d h \\
& =2 \int_{h / 2}^{A T} S_{r, l-1}(h, T) d h \\
& \ll \frac{(A k)^{4 k} B(k, l-1)^{-1}}{r^{l-2}(\log T)^{l-1}} \int_{h / 2}^{A T} \frac{(\log (3+r h \log T))^{k}}{(r h \log T)^{2 k-(1-2)}} d h \\
& \ll \frac{(A k)^{4 k} B(k, l)^{-1}(\log (3+r h \log T))^{k}}{r^{l-1}(\log T)^{l}(r h \log T)^{2 k-(l-1)}}
\end{aligned}
$$

2-3. Proof of Theorem 1. Now for $C>C_{0}$

$$
S_{r, k}(T) \ll S_{r, k}(C / \log T, T)+C^{k} /(\log T)^{k}
$$

$$
\ll \frac{C^{k}}{(\log T)^{k}}+\frac{(A k)^{3 k}(\log (3+r C))^{k}}{r^{2 k} C^{k+1}(\log T)^{k}} .
$$

Here we choose $C=(A k)^{3 k /(2 k+1)} r^{-2 k /(2 k+1)}$. Then we get our conclusion.
2-4. Proof of Theorem 2. By Lemma 2 we get

$$
\begin{aligned}
& \frac{C^{k}}{(\log T)^{k}} N_{r}\left(\frac{C}{\log T}, T\right) \leqslant N(T) S_{r, k}\left(\frac{C}{\log T}, T\right) \\
& \quad<N(T) \frac{(A k)^{3 k}(\log (3+r C))^{k}}{r^{2 k} C^{k+1}(\log T)^{k}} .
\end{aligned}
$$

Choosing $k=\left[\left(r^{2} C^{2} /\left(e^{3} \log C r\right)\right)^{1 / 3} A^{-1}\right]$ we get our conclusion.

References

[1] A. Fujii: On the distribution of the zeros of the Riemann zeta function in short intervals. Bull. of A.M.S., 81 (1), 139-142 (1975).
[2] -: On the zeros of Dirichlet L-functions. I. Trans. of A. M. S., 196, 225-235 (1974).
[3] -: On the zeros of Dirichlet L-functions. II (to appear).
[4] J. Moser: On a function $S(t)$ in the theory of the Riemann zeta function (to appear in Acta Arith. (10031, Zentralblatt Band 291, 1975)).
[5] E. C. Titchmarsch: The Theory of the Riemann Zeta Function. Oxford at Clarendon Press (1951).

