61. On Higher Coassociativity

By Shiroshi SAITO

(Comm. by Kenjiro SHODA, M. J. A., May 12, 1976)

In this note, we generalize the coassociativity of co-H-spaces and primitive maps among them, and give a relation between A'_4 -spaces and their coretractions. We work in the category of based spaces having the homotopy types of *CW*-complexes and based maps. Details will appear in [2].

Let K_n $(n \ge 2)$ be Stasheff's convex polyhedron [3], which admits face maps $\partial_k(r,s): K_r \times K_s \to K_n, r+s=n+1, 1 \le k \le r$, and degeneracy maps $s_j: K_n \to K_{n-1}, 1 \le j \le n$, satisfying suitable *FD*-commutativities. For a given based space $X, W_n(X)$ denotes the wedge product of *n*copies of X, (i, x) denotes the element whose *i*-th factor is x.

Definition 1. A space X is an A'_n -space, if there exists an A'_n -structure $\{M'_{x,i}: X \times K_i \rightarrow W_i(X)\}_{2 \le i \le n}$ satisfying the following conditions:

(1.1) $\mu'_{x} = M'_{x,2}$ is a comultiplication with the counit $*: X \to *$, where * is the base point of X;

(1.2) for any $(\rho, \sigma) \in K_r \times K_s$, r+s=i+1, it holds

 $M'_{i}(; \partial_{k}(r, s)(\rho, \sigma)) = M'_{s}(; \sigma)(k) \cdot M'_{r}(; \rho),$

where $M'_{s}(; \sigma)(k)$ implies $M'_{s}(; \sigma)$ is applied on the k-th factor and 1 is applied on other factors;

(1.3) for $i \ge 3$, there exist homotopies

 $D'_{X,i,j}: M'_{i-1}(; s_j(\tau)) \simeq p_j M'_i(; \tau)$

where $p_j = \bigtriangledown(j) \cdot *(j)$ and $\bigtriangledown : X \lor X \rightarrow X$ is the folding map.

Definition 2. An A'_n -space X $(n \ge 3)$ is an A'_n -cogroup, if there exists a coinversion $\nu'_X : X \to X$ such that it holds $\bigtriangledown (1 \lor \nu'_X) \cdot \mu'_X \simeq * \simeq \bigtriangledown (\nu'_X \lor 1) \cdot \mu'_X$.

Definition 3. A map $f: X \to Y$ of A'_n -spaces is an A'_n -map if there exist homotopies $H'_i: X \times K_i \times I \to W_i(Y), 2 \leq i \leq n$, such that

(3.1) $H'_i((x; \tau), 0) = W_i(f) \cdot M'_{X,i}(x; \tau)$

and

$$H'_{i}((x; \tau); 1) = M'_{Y,i}(f(x); \tau);$$

(3.2) for any
$$\partial_k(r, s)$$
, $r+s=i+1$, $1 \le k \le r$,

there exists a homeomorphism $\tilde{\partial}_k(r, s)$ of $K_r \times K_s \times I$ into $\partial K_i \times I$ which preserves level and satisfies

S. SAITO

$$\begin{split} H'_{i}(\tilde{\partial}_{k}(r,s)(x\,;\,(\rho,\sigma),t) \\ = & \begin{cases} H'_{s}\Big((\ \ ;\,\sigma),\frac{(2^{i-1}-1)t}{2^{s-1}-1}\Big)(k)\cdot M'_{X,r}(x\,;\,\rho) & \text{for } 0 \leq t \leq \frac{2^{s-1}-1}{2^{i-1}-1} \\ M'_{Y,s}(\ \ ;\,\sigma)(k)\cdot H'_{r}\Big((x\,;\,\rho),\frac{(2^{i-1}-1)t+1-2^{s-1})}{2^{i-1}-2^{s-1}}\Big) & \text{for } \frac{2^{s-1}-1}{2^{i-1}-1} \leq t \leq 1\,; \end{cases} \end{split}$$

(3.3) there exists a homotopy $G: X \times I \times I \to Y \times Y$ such that $G(x, t, 0) = (f \times f) \cdot D'_{X,t}(x, t)$, $G(x, 1, s) = j \cdot H'_2(x, s)$, $G(x, t, 1) = D'_Y(f(x), t)$ and $G(x, 0, s) = \Delta_Y \cdot f(x)$, where $j: X \vee X \to X \times X$ is the inclusion map, Δ is the diagonal map and D' is the homotopy from Δ to $j \cdot \mu'$. (In this situation, we say that H'_2 is compatible with D'.)

(3.4) $\{H'_i\}$ are compatible with $D'_{X,i,j}$ and $D'_{Y,i,j}$.

A suspended space SA admits a canonical A'_n -structure $\{M'_{0,i}\}_{2 \le i \le n}$ induced by suspension structure for all $n \ge 2$, and the suspension Sf is an A'_n -map.

Let $\varepsilon: S\Omega X \to X$ be the evaluation map, i.e., $\varepsilon \langle a, l \rangle = l(a)$, then $\gamma: X \to S\Omega X$ is called a (homotopy) coretraction of X if $\varepsilon \cdot \gamma \simeq 1$. As is well known, the set of homotopy classes of coretractions and the set of comultiplications of X are in 1 to 1 correspondence, and γ is an A'_2 -map if and only if X is an A'_3 -cogroup (cf. [1]).

Definition 4. An A'_4 -cogroup X is an s- A'_4 -cogroup, if it holds

 $W_4(\varepsilon) \cdot (1 \lor \nu_0' \lor 1 \lor \nu_0') \cdot (1 \lor 1 \lor \mu_0') \cdot M_{0,3}'(\gamma \times 1)$

 $\simeq (1 \lor \nu'_X \lor 1 \lor \nu'_X) (1 \lor 1 \lor \mu'_X) \cdot M'_{X,3}$ rel. $X \times \partial K_3$.

Now, we obtain the following

Theorem 1. Let X be an A'_3 -cogroup, then X is an s- A'_4 -cogroup if and only if the corresponding γ is an q- A'_3 -map.

Proof. Sufficiency. K_3 is a line-segment whose vertices correspond to $(\mu' \vee 1) \cdot \mu'$ and $(1 \vee \mu') \cdot \mu'$, respectively, and K_4 is a pentagon whose vertices are $P_0((\mu' \vee \mu') \cdot \mu'), P_1((\mu' \vee 1 \vee 1) \cdot (\mu' \vee 1) \cdot \mu'), P_2((1 \vee \mu' \vee 1) \cdot (\mu' \vee 1) \cdot (\mu' \vee 1) \cdot (1 \vee \mu') \cdot \mu')$ and $P_4((1 \vee 1 \vee \mu') \cdot (1 \vee \mu) \cdot \mu')$. Define $H': X \times K_4 \times \{1\} \cup (\cup \tilde{\partial}_k(r, s)) \rightarrow W_4(X)$ using $M'_{0,4}, H'_2$ and H'_3 . H' may be extended to H'' over $X \times K_4 \times \{1\} \cup \partial K_4 \times I$ using $H'_2 \vee H'_2$. Extend H'' to M'' over $X \times K_4 \times I$, and put $M'_{X,4} = M'' | X \times K_4 \times \{0\}$, which gives the desired structure.

Necessity. Define $\Phi_k : W_{k-1}(S\Omega X) \to W_k(X)$ by

$$\varPhi_k(i,\langle a,l
angle) = egin{cases} (i,l(2a)) & ext{for } 0 \leq a \leq rac{1}{2} \ (k,l(2-2a)) & ext{for } rac{1}{2} \leq a \leq 1 \end{cases}$$

then Φ_k is a homotopy-monomorphism, and put

$$\Pi_{\mathcal{X}} = (1 \vee \nu_{\mathcal{X}}' \vee 1 \vee \nu_{\mathcal{X}}') \cdot (1 \vee 1 \vee \mu_{\mathcal{X}}') \cdot M_{\mathcal{X},3}'.$$

Then, we shall have the following:

(i) $\Phi_4(1 \vee \nu' \vee \nu') = (1 \vee 1 \vee T) \cdot \rho \cdot (\Phi_2 \vee \Phi_2 \vee \Phi_2),$

222

No. 5]

where T is the switching map and $\rho = (1 \vee 1 \vee \nabla \vee 1) \cdot (1 \vee T \vee 1 \vee 1) \cdot (1 \vee \nabla \vee 1 \vee 1 \vee 1)$;

(ii) $\rho(\mu'_X \vee \mu'_X \vee \mu'_X) \cdot M'_{X,3} \simeq \Pi_X$ rel. $X \times \partial K_3$, where $\mu'_X = (1 \vee \nu'_X) \cdot \mu'_X$; (iii) $\Phi_4(1 \vee \nu'_0 \vee \nu'_0) \cdot W_3(\gamma) \cdot M'_{X,3} \simeq (1 \vee 1 \vee T) \cdot \Pi_X$ rel. $X \times \partial K_3$; and

(iv) $\Phi_4(1 \lor \nu'_0 \lor \nu'_0) \cdot M'_{0,3} \simeq (1 \lor 1 \lor T) \cdot W_4(\varepsilon) \cdot \Pi_0$ rel. $X \times \partial K_3$. Since X is an s-A'_4-cogroup, we shall obtain

 $egin{array}{lll} & \varPhi_4(1 egin
u_0' igvee
u_0') \cdot M_{0,3}' \cdot (\gamma imes 1) \ & \simeq arPsi_4(1 egin
u_0' egin
u_0') \cdot W_3(\gamma) \cdot M_{X,3}' & ext{rel. } X imes \partial K_3, \end{array}$

therefore, since Φ_4 is a homotopy monomorphism, γ is an q- A'_3 -map.

References

- Ganea, T.: Cogroups and Suspensions. Inventiones Math., 9, 185-197 (1970).
- [2] Saito, S.: On Higher Coassociativity (to appear).
- [3] Stasheff, J.: Homotopy associativity of H-spaces. I. Trans. Amer. Math. Soc., 108, 275-292 (1963).