60. Scalar Extension of Quadratic Lattices

By Yoshiyuki KITAOKA Nagoya University

(Comm. by Kenjiro SHODA, M. J. A., May 12, 1976)

Let E/F be a finite extension of algebraic number fields, $\mathcal{O}_E, \mathcal{O}_F$ the maximal orders of E, F respectively. Let L, M be quadratic lattices over \mathcal{O}_F in regular quadratic spaces U, V over F respectively; then we are concerned about the following question:

We assume:

(*) there is an isometry σ from $\mathcal{O}_E L$ onto $\mathcal{O}_E M$,

where $\mathcal{O}_E L$, $\mathcal{O}_E M$ denote tensor products of \mathcal{O}_E and L, M over \mathcal{O}_F respectively.

Does the assumption imply $\sigma(L) = M$?

The answer is negative if a quadratic space $EU(\cong EV)$ is indefinite. Even if we suppose that EU is definite, the answer is negative in general. However it seems to be affirmative if we confine ourselves to the following cases:

F: the field Q of rational numbers,

E: a totally real algebraic number field,

L, M: definite quadratic lattices over the ring Z of rational integers.

We give some evidences here. Detailed proofs will appear elsewhere.

Theorem 1. Let m be an integer ≥ 2 , and E be a totally real algebraic number field with degree m, and assume that L, M be definite quadratic lattices over Z. Then the assumption (*) implies $\sigma(L)=M$, if E does not contain a finite number of (explicitly determined) algebraic integers which are not dependent on L, M, but on m.

Theorem 2. Let E be totally real, and L, M be binary or ternary definite quadratic lattices over Z. The assumption (*) implies $\sigma(L) = M$.

Corollary. Let E, K be a totally real algebraic number field and an imaginary quadratic field respectively whose discriminants are relatively prime. Then an ideal of K is principal if it is principal in a composite field KE.

Theorem 3. Let E be a real quadratic, totally real cubic or totally real Dirichlet's biquadratic field, and L, M be definite quadratic lattices over Z. Then the assumption (*) implies $\sigma(L)=M$.

In case that L=M and σ gives an orthogonal decomposition of

 $\mathcal{O}_E L$, we have

Theorem 4. Let E/F be a Galois extension of totally real algebraic number fields. Assume that an intermediate field K between E and F is F if K is unramified over F. If a definite quadratic lattice L over \mathcal{O}_F is decomposable over $\mathcal{O}_E, \mathcal{O}_E L = L'_1 \perp \cdots \perp L'_m$, then there is a decomposition of $L = L_1 \perp \cdots \perp L_m$ with $L'_i = \mathcal{O}_E L_i$, in other words, a definite indecomposable quadratic lattice over \mathcal{O}_F remains indecomposable over \mathcal{O}_E .

Corollary. Let E be a totally real algebraic number field, and L be a definite indecomposable quadratic lattice over Z. Then $\mathcal{O}_E L$ is also indecomposable.

Remark. Let E/F be an unramified extension of totally real algebraic number fields. Then there exists a definite indecomposable quadratic lattice over \mathcal{O}_F which is decomposable over \mathcal{O}_E .

Our question is closely related to the problem:

If $\mathcal{O}_E L$, $\mathcal{O}_E M$ are isometric, then are L, M isometric?

In case of similar problems for spinor genus, see [1].

To prove our results the behaviour of the minimum under the scalar extension is investigated.

Added in the proof. Recently Theorem 2.3 were fairly improved.

References

- A. G. Earnest and J. S. Hsia: Springer-type theorems for spinor genera of quadratic forms. Bull. Amer. Math. Soc., 81, 942-943 (1975).
- [2] O. T. O'Meara: Introduction to Quadratic Forms. Springer-Verlag, (1963).

220