57. A Sharp Form of the Existence Theorem for Hyperbolic Mixed Problems of Second Order

By Sadao Miyatake
Department of Mathematics, Kyoto University

(Comm. by Kôsaku Yosida, M. J. A., May 12, 1976)
§1. Introduction. In this paper we consider the following initial boundary value problem

$$
\{P, B\}\left\{\begin{array}{l}
P u=f(x, t), \quad \text { for } x \in \Omega, t>0 \\
\left.B u\right|_{\partial \Omega}=g(s, t) \quad \text { for } s \ni \partial \Omega, t>0, \\
D_{t}^{j} u_{t=0}=u_{j}(x),(j=0,1), \quad \text { for } x \in \Omega
\end{array}\right.
$$

in the cylindrical domain $\Omega \times(0, \infty)$, where Ω is the exterior or the interior of a smooth and compact hypersurface $\partial \Omega$ in $R^{n+1} . \quad P$ is a regularly hyperbolic operator with respect to t, and $\partial \Omega$ is non-characteristic to P. Moreover we assume that the only one of $\tau_{1}(\nu)$ and $\tau_{2}(\nu)$ is negative for all $(s, t) \in \partial \Omega \times(0, \infty)$, where $\tau_{j}(\xi)$ are the roots of $P(s, t ; \xi, \tau)$ $=0$ and ν is the inner unit normal at (s, t). This condition means that the number of boundary conditions is one. B is a first order operator :

$$
B=B\left(s, t ; D_{x}, D_{t}\right)=\sum_{j=1}^{n+1} b_{j}(s, t) D_{x_{j}}-c(s, t) D_{t}, \quad D_{t}=\frac{1}{i} \frac{\partial}{\partial t} \quad \text { etc. }
$$

where $\sum_{j=1}^{n+1} b_{j}(s, t) \nu_{j}=B(s, t, \nu, 0)=1$. We assume that all the coefficients are smooth and bounded, and that they remain constant outside some compact sets.

We are concerned with the following question: Under what condition the solution $u(t)$ of $\{P, B\}$ has the continuity for the initial data in the same Sobolev space? The answer is just the condition (H) below, which was derived in [2]. ${ }^{1)}$ We state it as

Theorem 1. The necessary and sufficient condition that the energy inequality

[^0]\[

$$
\begin{equation*}
\sum_{j=0}^{1}\left\|\left(D_{t}^{j} u\right)(t)\right\|_{1-j} \leq C(T)\left\{\sum_{j=0}^{1}\left\|\left(D_{t}^{j} u\right)(0)\right\|_{1-j}+\int_{0}^{t}\|(P u)(s)\|_{0} d s\right\} \tag{1.1}
\end{equation*}
$$

\]

holds for any $u=u(x, t)$ in $C_{0}^{\infty}\left(\bar{\Omega} \times R^{1}\right)$ satisfying $B u_{\partial \Omega}=0$ and for any t in $(0, T)$ with some constant $C(T)$, is the following condition (H).
(H): For all $(s, t, \eta) \in \partial \Omega \times R^{1} \times S^{n},(\eta \cdot \nu=0),\{P, B\}$ satisfies the followings. (We state the case $P=\square$. In general, see Theorem 2 in [2].)

$$
A=\left(\begin{array}{cc}
2 \operatorname{Re} \alpha & \operatorname{Im}(\alpha \bar{\beta}) \tag{I}\\
\operatorname{Im}(\alpha \bar{\beta}) & 2 \operatorname{Re} \beta
\end{array}\right) \geq 0, \text { when }|\operatorname{Re} \alpha|+|\operatorname{Re} \beta| \neq 0,
$$

(II) $1+(\operatorname{Im} \alpha)(\operatorname{Im} \beta) \geq \delta>0$, when $|\operatorname{Re} \alpha|+|\operatorname{Re} \beta|=0$.

Here $\alpha=c(s, t)+B(s, t, \eta, 0) /|\eta|$ and $\beta=c(s, t)-B(s, t, \eta, 0) /|\eta|$. $\|u(t)\|_{k}$ means Sobolev k-norm in Ω.

We can say more, that is
Theorem 2. Suppose (H). If $f(t) \in \mathcal{E}_{t}^{0}\left(L^{2}(\Omega)\right),{ }^{2)} g \in \mathcal{E}_{t}^{0}\left(H^{\frac{1}{2}}(\partial \Omega)\right)$ and $u_{j} \in H^{1-j}(\Omega),(j=0,1)$, then there exists a solution $u(t)$ of $\{P, B\}$ in $\mathcal{E}_{t}^{0}\left(H^{1}(\Omega)\right) \cap \mathcal{E}_{t}^{1}\left(L_{2}(\Omega)\right)$ satisfying the following energy estimate (E) with $k=0$. Moreover if we assume that the smooth data $\left\{f, g, u_{0}, u_{1}\right\}$ satisfy the compatibility condition ${ }^{3)}$ of order $k,(k \geq 1)$, then the solution satisfies
(E) $\sum_{j=0}^{1}\left\|\left(D_{t}^{j} u\right)(t)\right\|_{1-j+k}^{2}+\gamma_{i+j \leq k} \int_{0}^{t} e^{\gamma(t-s)}\left\langle\left(D_{x}^{i} D_{t}^{j} u(s)\right\rangle_{i-i-j+k}^{2} d s\right.$ $\leq C e^{r t}\left\{\sum_{j=0}^{1}\left\|u_{j}\right\|_{1-j+k}^{2}+\frac{1}{\gamma} \sum_{j \leq k} \int_{0}^{t} e^{-r s}\left(\left\|\left(D_{t}^{j} f\right)(s)\right\|_{k-j}^{2}+\left\langle\left\langle D_{t}^{j} g\right)(s)\right\rangle_{z_{+k-j}}^{2}\right) d s\right\}$, for $\gamma>_{\gamma_{k}}$, where C and γ_{k} are positive constants. $\langle v(s)\rangle_{r}$ means Sobolev r-norm in $\partial \Omega$. The solution has the same propagation speed as that in the case of Cauchy problem.

Remark. If $g \equiv 0$ in the problem $\{P, B\}$, the above solution u satisfies (1.1).

The detailed proof will be given in a forthcoming paper. Here we sketch the proofs of (1.1) and (E) in the case where $P=\square$ and $\Omega=R_{+}^{n+1}$ $=\left\{(x, y): x>0, y \in R^{n}\right\}$ for simplicity.
§2. The choice of \boldsymbol{Q}. We prove (1.1) by the integration by parts of

$$
\mathcal{G}\left((0, t), P, Q ; \varphi_{j} u\right)=2 i \operatorname{Im} \int_{0}^{t} \int_{R_{+}^{n+1}} e^{-2 r^{t}} P \varphi_{j} u \overline{Q \varphi_{j}} u d x d y d t
$$

where Q is a suitable first order operator. Here $\varphi_{j} u=\overline{F_{y}} \varphi_{j} \mathcal{F}_{y} u$ is a localization of u corresponding to the partition of unity:

$$
\begin{equation*}
\sum_{j=0}^{\text {fintoto }} \varphi_{j}(x, y, t, \eta) \equiv 1 \quad \text { on } \quad \bar{R}_{+}^{1} \times R^{n} \times \bar{R}_{+}^{1} \times R^{n}, \tag{*}
\end{equation*}
$$

where $\varphi_{j},(j \geq 1)$, are homogeneous of degree zero in η for $|\eta| \geq 1$. We take Q in a neighbourhood of the boundary as follows:
2) $\mathcal{E}_{t}^{k}(H) \ni u(t)$ means that u is a continuous function in H, up to their k-th derivatives.
3) See $\S 9$ in [2].
(I) $Q=\left(\alpha_{1} z_{1}+\beta_{1} z_{2}\right)+\varepsilon\left(z_{1}+c z_{2}-d \xi\right)$, if the supports of φ_{j} contain any point satisfying $\alpha_{1} \beta_{1}=0,\left(z_{1}=\tau-|\eta|, z_{2}=\tau+|\eta|, \alpha=\alpha_{1}+i \alpha_{2}, \beta=\beta_{1}+i \beta_{2}\right)$.
(II) $Q=\left(\alpha_{1} z_{1}+\beta_{1} z_{2}\right)-\varepsilon\left(2 \xi-c_{1} z_{1}-c_{2} z_{2}\right)$, in other cases.

Here ε is a sufficiently small positive number and c_{1}, c_{2} and c are positive functions in (y, t, η). We choose these as follows:
(1.1) $\quad 2\left(\alpha_{1} z+\beta_{1}\right)\left(c_{1} z+c_{2}\right)=|\alpha|^{2} z^{2}+2(2+\operatorname{Re} \alpha \bar{\beta}) z+|\beta|^{2}+(\operatorname{det} A) / \alpha_{1}^{2}$,
(1.2) $\varepsilon_{1}<c<1 / \varepsilon_{2}$
(1.3)

$$
d=4\left(d_{1} X+d_{2} Y\right)
$$

where $X=\left(\beta_{1}-\alpha_{1} \varepsilon_{1}\right) / \rho\left(1-\varepsilon_{1} \varepsilon_{2}\right)$,

$$
Y=\left(\alpha_{1}-\beta_{1} \varepsilon_{2}\right) / \rho\left(1-\varepsilon_{1} \varepsilon_{2}\right),
$$

and

$$
\binom{d_{1}}{d_{2}}=\frac{1}{1-\varepsilon_{1} \varepsilon_{2}}\left(\begin{array}{cc}
1 & -\varepsilon_{2} \\
-\varepsilon_{1} & 1
\end{array}\right)\binom{1}{c} .
$$

Here $\varepsilon_{1}, \varepsilon_{2}$ and ρ are defined by

$$
\begin{equation*}
|\alpha|^{2} z^{2}+2(2+\operatorname{Re} \alpha \bar{\beta}) z+|\beta|^{2}=\rho\left(z+\varepsilon_{1}\right)\left(1+\varepsilon_{2} z\right) . \tag{1.4}
\end{equation*}
$$

We remark that for the estimates (1.1) and (E) we need the localization of type (*). This makes the choice of Q difficult. In the actual calculations we employ a special device concerning the reverse process of Green formula which will be explained below. We need these, because the estimates (1.1) and (E) are finer than the estimate; $\gamma|u|_{1, r}^{2}$ $\leq \frac{c}{\gamma}|P u|_{0, r}^{2}$ which was treated earlier in [2], [1] and [3].
§3. Green formula associated with the boundary condition. To $\mathcal{G}((0, t), P, Q ; u)$ there corresponds the following symbolic calculus:

$$
\begin{aligned}
G(P, Q) & =P(\xi, \eta, \tau) Q(\zeta, \eta, \bar{\tau})-Q(\xi, \eta, \tau) P(\zeta, \eta, \bar{\tau}) \\
& =(\xi-\zeta) G_{x}(P, Q)-(\tau-\bar{\tau}) G_{t}(P, Q) .
\end{aligned}
$$

Here $G_{x}(P, Q)$ and $G_{t}(P, Q)$ are quadratic forms in $\left(\xi, z_{1}, z_{2}\right), z_{1}$ and z_{2} being $z_{1}=\tau-|\eta|$ and $z_{2}=\tau+|\eta|$ respectively. Now, taking account of the boundary condition $\left.D_{x} u\right|_{x=0}=\left.\frac{1}{2}\left(\alpha z_{1}+\beta z_{2}\right)(D) u\right|_{x=0}+g$, we substitute $\frac{1}{2}\left(\alpha z_{1}+\beta z_{2}\right)$ into ξ in $G_{x}(P, Q)$, and $\frac{1}{2}\left(\bar{\alpha} \bar{z}_{1}+\bar{\beta} \bar{z}_{2}\right)$ into ζ in $G_{x}(P, Q)$. Then $G_{x}(P, Q)$ becomes an Hermite form $G_{x}^{\prime}(P, Q)$ in $\left(z_{1}, z_{2}\right)$. Denote the anti-symmetric part of $G_{x}^{\prime}(P, Q)$ by $i \operatorname{Im} g(P, Q)_{1,2}\left(z_{1} \bar{z}_{2}-z_{2} \bar{z}_{1}\right)$ and notice that

$$
(\xi-\zeta)\left\{z_{1} \bar{z}_{2}-z_{2} \overline{\bar{z}}_{1}\right\}=-(\tau-\bar{\tau})\left\{\xi \bar{z}_{1}-\xi \bar{z}_{2}-z_{1} \zeta+z_{2} \xi\right\} .
$$

Hence we have

$$
G(P, Q)=(\xi-\zeta) \tilde{G}_{x}(P, Q)-(\tau-\bar{\tau}) \tilde{G}_{t}(P, Q),
$$

where $\tilde{G}_{x}(P, Q)$ is a symmetric part of $G_{x}^{\prime}(P, Q)$ and \tilde{G}_{t} is an Hermite form :

$$
\tilde{G}_{t}(P, Q)=G_{t}(P, Q)+i \operatorname{Im} g(P, Q)_{1,2}\left\{\xi \bar{z}_{1}-\xi \tilde{z}_{2}-z_{1} \zeta+z_{2} \zeta\right\} .
$$

Using Q defined in $\S 2$ we can prove $\tilde{G}_{x} \geq 0$ and $\tilde{G}_{t}>0$.

References

[1] R. Agemi: On a characterization of L^{2}-well-posed mixed problems for hyperbolic equations of second order. Proc. Japan Acad., 51 (4), 247-252 (1975).
[2] S. Miyatake: Mixed problem for hyperbolic equations of second order with first order complex boundary operators. Japanese J. Math., 1 (1), 111-158 (1975).
[3] R. Sakamoto: On a class of hyperbolic mixed problem (to appear).

[^0]: 1) (H) was introduced as a characterization of problems which satisfy

 $$
 \gamma|u|_{1, r}^{2} \leq \frac{c}{\gamma}|P u|_{0, r}^{2},
 $$

 holds for any smooth function with compact support satisfying the homogeneous boundary condition, in the case of constant coefficients. See also [1] and [3]. In [2] we proved the existence theorem with the initial data in a weaker sense. It is difficult to prove the estimate (1.1) as the direct extension of the arguments in [2]. For this purpose we need more precise considerations on the global properties of (H).

