99. Some Results on Additive Number Theory. II

By Minoru Tanaka
Department of Mathematics, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo
(Communicated by Kunihiko Kodaira, M. J. A., Sept. 13, 1976)

In this note we outline the proof of the
Theorem. Let k be an integer >1, and let $\alpha_{i}<\beta_{i}(i=1, \cdots, k)$. For sufficiently large positive integer N, let $A(N)$ denote the number of representations of N as the sum of k positive integers: $N=n_{1}+\cdots$ $+n_{k}$ such that
$\log \log N+\alpha_{i} \sqrt{\log \log N}<\omega\left(n_{i}\right)<\log \log N+\beta_{i} \sqrt{\log \log N} \quad(i=1, \cdots, k)$ simultaneously, where $\omega\left(n_{i}\right)$ denotes the number of distinct prime factors of n_{i}. Then, as $N \rightarrow \infty$, we have

$$
A(N) \sim \frac{N^{k-1}}{(k-1)!}(2 \pi)^{-k / 2} \prod_{i=1}^{k} \int_{\alpha_{i}}^{\beta_{i}} e^{-x^{2 / 2}} d x .
$$

This theorem was announced as Theorem 3 in [2] without proof. Our proof is elementary and makes no use of any limit theorems in probability theory.

Lemma 1. Let $a_{i}(i=1, \cdots, k)$ and b be positive integers such that $d=\left(a_{1}, \cdots, a_{k}\right)$ divides b. Let S denote the number of solutions of the Diophantine equation $a_{1} x_{1}+\cdots+a_{k} x_{k}=b$ in positive integers, then we have $\left|S-d b^{k-1} /\left[(k-1)!a_{1} \cdots a_{k}\right]\right|<C b^{k-2}$, where C is a positive number dependent only on k and independent of a_{i} and b.

We define the set P_{N} consisting of primes as $P_{N}=\left\{p: e^{(\log \log N)^{2}}<p\right.$ $\left.<N^{(\log \log N)-2}\right\}$ and put $y(N)=\sum_{p \in P_{N}} 1 / p$. Then we have

$$
\begin{equation*}
y(N)=\log \log N+O(\log \log \log N) \tag{1}
\end{equation*}
$$

We denote by $\omega_{N}(n)$ the number of primes p such that $p \mid n, p \in P_{N}$.
For any positive integer t, we define the set $M(t)$ consisting of positive integers as $M(t)=M(N ; t)=\{m: m$ is squarefree; m has t prime factors; $\left.p \mid m \Rightarrow p \in P_{N}\right\}$. We put for convenience $M(0)=\{1\}$.

For any k positive integers t_{i}, we denote by $F\left(N ; t_{1}, \cdots, t_{k}\right)$ the number of representations of N as the sum of k positive integers: N $=n_{1}+\cdots+n_{k}$ such that $\omega_{N}\left(n_{i}\right)=t_{i}$ simultaneously.

For any k positive integers $m_{i} \in M\left(t_{i}\right)$ with some positive integers t_{i}, we denote by $G\left(N ; m_{1}, \cdots, m_{k}\right)$ the number of representations of N as the sum of k positive integers: $N=n_{1}+\cdots+n_{k}$ such that $\prod_{p \mid n_{i}, p \in P_{N}} p$ $=m_{i}$ simultaneously. We have

$$
F\left(N ; t_{1}, \cdots, t_{k}\right)=\sum_{m_{1} \in M\left(t_{1}\right)} \cdots \sum_{m_{k} \in M\left(t_{k}\right)} G\left(N ; m_{1}, \cdots, m_{k}\right) .
$$

For any $k+1$ positive integers t_{i} and T, we put
$\mathscr{H}^{(0)}\left(N ; t_{1}, \cdots, t_{k} ; T\right)=\sum_{m_{1} \in M\left(t_{1}\right)} \cdots \sum_{m_{k} \in M(t k)} \mathcal{K}^{(0)}\left(N ; m_{1}, \cdots, m_{k} ; T\right)$, $\mathcal{K}^{(0)}\left(N ; m_{1}, \cdots, m_{k} ; T\right)=\sum_{\tau_{1}=0}^{2 T} \cdots \sum_{\tau_{k}=0}^{2 T}(-1)^{\tau_{1}+\cdots+\tau_{k}} \mathcal{L}\left(N ; m_{1}, \cdots, m_{k} ;\right.$ $\left.\tau_{1}, \cdots, \tau_{k}\right)$,

Similarly we put
$\mathscr{H}^{(i)}\left(N ; t_{1}, \cdots, t_{k} ; T\right)=\sum_{m_{1} \in M\left(t_{1}\right)} \cdots \sum_{m_{k} \in M\left(t_{k}\right)} \mathcal{K}^{(i)}\left(N ; m_{1}, \cdots, m_{k} ; T\right)$, $\mathcal{K}^{(i)}\left(N ; m_{1}, \cdots, m_{k} ; T\right)$

$$
=\sum_{\tau_{1}=0}^{2 T} \cdots \sum_{\tau_{i}=0}^{2 T+1} \cdots \sum_{\tau_{k}=0}^{2 T}(-1)^{\tau_{1}+\cdots+\tau_{k}} \mathcal{L}\left(N ; m_{1}, \cdots, m_{k} ; \tau_{1}, \cdots, \tau_{k}\right),
$$

where τ_{i} runs through $0, \cdots, 2 T+1$, and other τ 's run through $0, \cdots, 2 T$.
Lemma 2. $\quad \sum_{i=1}^{k} \mathcal{H}^{(i)}-(k-1) \mathcal{H}^{(0)} \leqq F \leqq \mathscr{H}^{(0)}$.
For brevity we write $\mathcal{G}^{(0)}$ etc. for $\mathcal{H}^{(0)}\left(N ; t_{1}, \cdots, t_{k} ; T\right)$ etc. Now we have

$$
\mathcal{L}=\sum_{n_{1}+\cdots+n_{k}=N, m_{i} \mu_{i} \mid n_{i}} \prod_{i=1}^{k}\binom{\omega_{N}\left(n_{i}\right)-t_{i}}{\tau_{i}}
$$

and, as in the proof of Lemma 3 in [1], we have

$$
\sum_{i=1}^{k} \mathcal{K}^{(i)}-(k-1) \mathcal{K}^{(0)} \leqq G \leqq \mathcal{K}^{(0)},
$$

from which the lemma follows.
We shall use this lemma to obtain a certain asymptotic formula for F by proving easier ones for $\mathcal{H}^{(0)}$ and $\mathscr{H}^{(i)}$ giving T an appropriate value. This procedure might be said to be a type of sieve method. As $\mathscr{H}^{(i)}$ can be dealt with in almost the same way as $\mathcal{H}^{(0)}$, we shall be concerned with $\mathscr{G}^{(0)}$. For this purpose we introduce some more functions. We put

$$
\begin{aligned}
& H_{j}\left(N ; t_{1}, \cdots, t_{k} ; T\right)=\sum_{m_{1} \in M\left(t_{1}\right)} \cdots \sum_{m_{k} \in M\left(t_{k}\right)} K_{j}\left(N ; m_{1}, \cdots, m_{k} ; T\right) \text {, } \\
& K_{j}\left(N ; m_{1}, \cdots, m_{k} ; T\right) \\
& =\sum_{\tau_{1}=0}^{2 T} \cdots \sum_{\tau_{k}=0}^{2 T}(-1)^{\tau_{1}+\cdots+\tau_{k}} L_{j}\left(N ; m_{1}, \cdots, m_{k} ; \tau_{1}, \cdots, \tau_{k}\right) \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& L_{1}\left(N ; m_{1}, \cdots, m_{k} ; \tau_{1}, \cdots, \tau_{k}\right)=\sum_{\substack{\mu_{1} \in \sum_{1} \in\left(r_{1}\right) \\
\left(\mu_{1}, m_{1}\right) 1 \\
\left(m_{1} \mu_{1}, \cdots, \cdots, m_{k k}(k)=1\right.}} \cdots \sum_{\substack{\mu_{k} \in m_{k}\left(m_{k}\right)=1}} \frac{1}{m_{1} \mu_{1} \cdots m_{k} \mu_{k}} \text {, } \\
& L_{2}\left(N ; m_{1}, \cdots, m_{k} ; \tau_{1}, \cdots, \tau_{k}\right) \\
& =\sum_{\substack{\mu_{1} \in M_{1}\left(\tau_{1}\right) \\
\left(m_{1}, \mu_{1}, m_{1}\right) \\
\left(m_{1}, \cdots, m_{k} \mu_{k}\right)>1,}} \cdots \sum_{\substack{\mu_{k} \in m_{1}\left(\mu_{1} \mu_{1}, m_{k}, m_{k}, m_{k} k k_{k}\right) \\
1}} \frac{\left(m_{1} \mu_{1}, \cdots, m_{k} \mu_{k}\right)}{m_{1}, \cdots \mu_{1} \cdots m_{k} \mu_{k}},
\end{aligned}
$$

Now, from the above definitions, we at once have

$$
\begin{equation*}
H_{0}=H_{1}+H_{2}, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
H_{1}+H_{3}=\prod_{i=1}^{k} \sum_{m_{i} \in \mathcal{M}\left(t_{i}\right)} \frac{1}{m_{i}} \sum_{\tau_{i}=0}^{2 T}(-1)^{\tau_{i}} \sum_{\mu_{i} \in M\left(z_{i}\right),\left(\mu_{i}, m_{i}\right)=1} \frac{1}{\mu_{i}} . \tag{3}
\end{equation*}
$$

Lemma 3. Let $T=[4 y(N)]+1$. Then, as $N \rightarrow \infty$, we have

$$
H_{1}+H_{3}=\left(t_{1}!\cdots t_{k}!\right)^{-1}\{y(N)\}^{t_{1}+\cdots+t_{k}} e^{-k y(N)}\{1+o(1)\}
$$

uniformly in t_{i} with $t_{i}<2 y(N)$ simultaneously.
We consider the k factors on the right-hand side of (3) separately. By similar reasoning as in the proofs of Lemmas 4 and 5 in [1], we can see that

$$
\sum_{m_{i} \in M\left(t_{i}\right)} \frac{1}{m_{i}} \sum_{r_{i}=0}^{2 T}(-1)^{r_{i}}{ }_{\mu_{i} \in M\left(z_{i}\right),\left(\mu_{i}, m_{i}\right)=1} \frac{1}{\mu_{i}}=\frac{\{y(N)\}^{t_{i}} e^{-y(N)}}{t_{i}!}\{1+o(1)\}
$$

uniformly in t_{i} with $t_{i}<2 y(N)$, which gives the lemma.
Lemma 4. As $N \rightarrow \infty$, we have

$$
H_{2}=o\left[\left(t_{1}!\cdots t_{k}!\right)^{-1}\{y(N)\}^{t_{1}+\cdots+t_{k}} e^{-k y(N)}\right]
$$

uniformly in t_{i} with $t_{i}<2 y(N)$ and in arbitrary T, and similarly for H_{3}.

For each summand of the sum defining L_{2}, we put $d=\left(m_{1} \mu_{1}, \cdots\right.$, $m_{k} \mu_{k}$), $m_{i} \mu_{i}=d m_{i}^{\prime} \mu_{i}^{\prime}$ with $m_{i}^{\prime}\left|m_{i}, \mu_{i}^{\prime}\right| \mu_{i}$. Then, since $\left(m_{i}, \mu_{i}\right)=1$, it follows that

$$
\begin{equation*}
\left|H_{2}\right| \leqq \sum_{d} \frac{1}{d} \cdot\left(\prod_{i=1}^{k} \sum_{t_{i}=0}^{\infty} \sum_{m_{i} \in M\left(t_{i}\right)} \frac{1}{m_{i}}\right)^{2}, \tag{4}
\end{equation*}
$$

and this inequality remains true, when we let d run through the squarefree integers >1 such that the number of prime factors of d is $<\log N$ and each prime factor of d is $>e^{(\log \log N)^{2}}$. Now easy calculations give (5)

$$
\sum_{d} 1 / d=O\left(e^{-(\log \log N)^{2}} \log N\right)
$$

On the other hand

$$
\begin{equation*}
\sum_{t_{i}=0}^{\infty} \sum_{m_{i} \in M\left(t_{i}\right)} \frac{1}{m_{i}} \leqq \sum_{t_{i}=0}^{\infty} \frac{\{y(N)\}^{t_{i}}}{t_{i}!}=e^{y(N)} . \tag{6}
\end{equation*}
$$

It follows from (4), (5) and (6) that

$$
H_{2}=O\left(e^{2 k y(N)-(\log \log N)^{2}} \log N\right) .
$$

From this and (1), we obtain the desired estimation for $H_{2} . \quad H_{3}$ can be treated similarly.

Lemma 5. Let $T=[4 y(N)]+1$. Then, as $N \rightarrow \infty$, we have

$$
H_{0}=\left(t_{1}!\cdots t_{k}!\right)^{-1}\{y(N)\}^{t_{1}+\cdots+t_{k}} e^{-k y(N)}\{1+o(1)\}
$$

uniformly in t_{i} with $t_{i}<2 y(N)$.
The lemma follows from (2) and Lemmas 3 and 4.
Lemma 6. Let $T=[4 y(N)]+1$. Then, as $N \rightarrow \infty$, we have

$$
\mathscr{G}^{(0)}=\left\{(k-1)!t_{1}!\cdots t_{k}!\right\}^{-1} N^{k-1}\{y(N)\}^{t_{1}+\cdots+t_{k}} e^{-k y(N)}\{1+o(1)\}
$$

uniformly in t_{i} with $t_{i}<2 y(N)$, and similarly for $\mathscr{G}^{(i)}$.
By Lemma 1,

$$
\begin{equation*}
\mathcal{A}^{(0)}-N^{k-1} H_{0} /(k-1)!=O\left\{N^{k-2}\left(\prod_{i=1}^{k} \sum_{t_{i}=0}^{2 T} \sum_{m_{i} \in \mathcal{M}_{(t i)}} 1\right)^{2}\right\} \tag{7}
\end{equation*}
$$

since $t_{i}<T$. Also, since $T<5 \log \log N$ for large N by (1), we can see that

$$
\sum_{t_{i}=0}^{2 T} \sum_{m_{i} \in M\left(t_{i}\right)} 1=O\left(N^{10(\log \log N)-1}\right)
$$

It follows from this and (7) that

$$
\mathcal{I}^{(0)}-N^{k-1} H_{0} /(k-1)!=O\left(N^{k-2+20 k(\log \log N)-1}\right)
$$

The desired formula for $\mathcal{H}^{(0)}$ follows from this and Lemma 5. $\mathcal{H}^{(i)}$ can be treated similarly.

Lemma 7. As $N \rightarrow \infty$, we have

$$
F=\left\{(k-1)!t_{1}!\cdots t_{k}!\right\}^{-1} N^{k-1}\{y(N)\}^{t_{1}+\cdots+t_{k}} e^{-k y(N)}\{1+o(1)\}
$$

uniformly in t_{i} with $t_{i}<2 y(N)$.
The lemma follows from Lemmas 2 and 6.
Lemma 8. Let $\alpha_{i}<\beta_{i}(i=1, \cdots, k)$. Let $t_{i}(i=1, \cdots, k)$ be positive integers such that $t_{i}=y(N)+x_{i} \sqrt{y(N)}$ with $\alpha_{i}<x_{i}<\beta_{i}$. Then, as $N \rightarrow \infty$, we have

$$
F=\{(k-1)!\}^{-1} N^{k-1}\{2 \pi y(N)\}^{-k / 2} e^{-\left(x_{1}^{2}+\cdots+x_{k}^{2}\right) / 2}\{1+o(1)\}
$$

uniformly in t_{i}.
This Lemma corresponds to Lemma 6 in [1]. The Stirling formula is used in the proof.

Lemma 9. Let $\alpha_{i}<\beta_{i}(i=1, \cdots, k)$. Let $A^{*}(N)$ denote the number of representations of N as the sum of k positive integers: $N=n_{1}+\cdots$ $+n_{k}$ such that

$$
y(N)+\alpha_{i} \sqrt{y(N)}<\omega_{N}\left(n_{i}\right)<y(N)+\beta_{i} \sqrt{y(N)} \quad(i=1, \cdots, k)
$$

simultaneously. Then, as $N \rightarrow \infty$, we have

$$
A^{*}(N) \sim \frac{N^{k-1}}{(k-1)!}(2 \pi)^{-k / 2} \prod_{i=1}^{k} \int_{\alpha_{i}}^{\beta_{i}} e^{-x^{2 / 2}} d x
$$

This lemma corresponds to Lemma 7 in [1]. It can also be proved by (1) that

$$
\sum_{n_{1}+\cdots+n_{k}=N}\left\{\omega\left(n_{i}\right)-\omega_{N}\left(n_{i}\right)\right\}=O\left(N^{k-1} \log \log \log N\right)
$$

The theorem now follows from this, (1), and Lemma 9 by similar way as the proofs of Lemmas 8 and 9 in [1].

We could prove the theorem by induction on k. By this, however, the proof will not essentially be shortened.

The author expresses his thanks to Prof. S. Iyanaga for his kind advices.

References

[1] M. Tanaka: On the number of prime factors of integers. II. J. Math. Soc. Japan, 9, 171-191 (1957).
[2] -: Some results on additive number theory. I. Proc. Japan Acad., 52, 177-179 (1976).

