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In this note we outline the proof of the
Theorem. Let k be an integer 1, and let fl, (i-- 1, ., k).

For suciently large positive integer N, let A(N) denote the number
of representations of N as the sum of k positive integers" N--n1+...
+n such tha
log log N+ a,/iog log N (n,)log log N+,/iog log N (i= 1, ...,
simultaneously, where o(n,) denotes the number of distinct prime

factors of n,. Then, as N--.c, we have
N-1

(2)_/2 ;" e-xmdx.A(N)
(k-- 1) =1

This theorem was announced as Theorem 3 in [2] without proof.
Our proo is elementary and makes no use o any limit theorems in
probability theory.

Lemma 1. Let a (i--1, ..., k) and b be positive integers such that
d-(a, ..., a) divides b. Let S denote the number of solutions of the
Diophantine equation ax+ +ax b in positive integers, then we
have IS-db-/[(k-1) a .a]lCb-, where C is a positive number
dependent only on tc and independent of a and b.

We define the set P consisting o primes as P {p" e(g og) p
N(g)-’} and put y(N)=I/p. Then we have
( 1 ) y(N) log log N+ O(log log log N).

We denote by (n) the number of primes p such that pin, p e P.
For any positive integer t, we define the set M(t) consisting

positive integers as M(t)=M(N t)--{m" m is squarefree m has t prime
factors p]mp e P}. We put for convenience M(0)={1}.

For any k positive integers t,, we denote by F(N;t,..., t) the
number of representations of N as the sum of k positive integers" N
=n+... +n such that (n,)=t simultaneously.

For any k positive integers m, e M(t,) with some positive integers
t,, we denote by G(N; m,..., m) the number of representations of N
s the sum of k positive integers" N=n+ /n such that
=m, simultaneously. We have

F(N t, t)-- , , G(N ml, m).
ml M(tl) mM(t)
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For any/c+ 1 positive integers t and T, we put
ogf(N; , ...,$; T)---- , Jf(N; m, ...,m; T),

m t) mM(t)
2T 2T

jf(N; m, ...,m; T)----- _,... (--1)/’"+’F(N; m, ...,m
Vl=0 vk=0

T1 fk)
AT(Y;m,...,m,;r,...,r,)= , 1.

M(v) #M(v) n+...+n=N
(,m)=l (/,m)=l mliln (i=l,... ,k)

Similarly we put
f(N; t, ...,; T)---- y] jf(N; m, ...,m; T),

mM(t) mM(tk)

jf(N m, ..., m T)
2T 2T 2T= (--1)’/’’’/’AT(N; m, ...,m; r, ...,r),
vl=O v=0

where r runs through 0, ., 2T+ 1, and other r’ s run through 0, ., 2T.
Lemma 2. ,= qf()-(/c- 1)4(0) =<F
For brevity we write q(0) etc. for ()(N t, ..., t T) etc. Now

we have

nx+...+n=N, mlln i=1 lk Ti

and, as in the proof of Lemma 3 in [1], we have

from which the lemma follows.
We shall use this lemma to obtain a certain asymptotic formula

for F by proving easier ones for f(0) and q(() giving T an appropriate
value. This procedure might be said to be a type of sieve method. As
q(() can be dealt with in almost the same way as q:<0), we shall be con-
cerned with q(<0). For this purpose we introduce some more functions.
We put
H(N;tl,...,$;T)---- , K(N;m,...,m;T),

mM(t) mM(t)

K(N m, ., m T)
2T 2T

Y], Y] (--1)/’’’/’L(N; m, ...,m r, ...,r),
v=0 =0

Lo(N" m, ..., m r, r) , (mz, ..., m/)
e() e() ml/A
(/,ml) =1 (,m) =1

(m/i,"" ,m/)IN

1Li(N;mi,...,m;r,...,r)-- , ,
(i,ml) =1 (,m) =1

L.(N m:, ., m r:, ., r)

p:GM(r:)
(/l,m:) (p,m)

(ml/i," m///))
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Now, from the above definitions, we at once have
2 ) Ho=H+H.,

1 r 1(3) H+H3=I-I , (--1)
i=l mM(t) t v=0 pM(r), (t,m)=l

Lemma 3. Let T=[4y(N)]+ I. Then, as N, we have
H+H=(t t )-{y(Y)}t’+’"+te-(){l + o(1)}

uniformly in t with t 2y(N) simultaneously.
We consider the k actors on the right-hand side of (3) separately.

By similar reasoning as in the proofs of Lemmas 4 and 5 in [1], we can
see that

r 1 {Y(Y)}t’e-V() {1 + o(1)}E 1 E (_1), E
mteM(t) m =o eM(), (g,m)=i i

uniformly in t with tE2y(N), which gives the lemma.
Lemma 4. As N, we have

H=o[(t t )-{y(N)}t’+’"+te-(x)]
uniformly in t with tE2y(N) and in arbitrary T, and similarly for
g.

For each summand of the sum defining L, we put d=(mg,...,
mp),m dm with mlm, [. Then, since (m, ) 1, it follows
that

d " =1 t,=O

and this inequality remains true, when we let d run through the square-
ree integers > 1 such that the number of prime actors o d is < log N
and each prime actor of d is >e(o,. Now easy calculations give

( 5 ) 1/d= O(e-o log N).
On the other hand

t,=o m,e(t,) mi t,=o

It follows from (4), (5) and (6) that
H2=O(e()-() log N).

From this and (1), we obtain the desired estimation for H. H can
be treated similarly.

Lemma . Let T=[4y(N)]+ I. Then, as N, we have
H0=(t t l)-{y(N)}+’"+te-v(){l+ o(1)}

uniformly in t, with t, <2y(N).
The lemma follows from (2) and Lemmas 3 and 4.

Lemma 6. Let T=[4y(N)]+ I. Then, as N, we have
(0)={(k_ 1) t t l}-XN-{y(N)}t’+’"+te-v(){1+ o(1)}

uniformly in t, with t,<2y(N), and similarly for
By Lemma 1,
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(7) J(--N-Ho/(k--1) !=O N- 1
i=1 tt=0 mt

since t T. Also, since T 5 log log N for large N by (1), we can see
that

2T

E E 1 O(N’’o-,).tt=OmtM(tt)

It follows from this and (7) that
o N-Ho/(k-- 1) O(N-+*o

The desired formula or 0) follows from this and Lemma 5.
can be treated similarly.

Lemma 7. As N, we have
F={(k-- 1) tt t t}-X-{y(X)}t+’"+t*e-(){1 + o(1)}

uniformly in t, with t, <2y(N).
The lemma follows from Lemmas 2 and 6.
Lemma 8. Let a,< fl, (i= 1, ., k). Let t, (i= 1, ..., k) be positive

integers such that t,=y(N)+ x,J(N) with a,<x,<,. Then, as No,
we have

F={(k-- 1) }-X-{2y(X)}-/e-(+’"+)/{1+ o(1)}
uniformly in

This Lemma corresponds to Lemma 6 in [1]. The Stirling formula
is used in the proof.

Lemma 9. Let at< fl, (i=1, ..., k). Let A*(N) denote the number
of representations of N as the sum of k positive integers: N=n+...
+n such that

y(X) + ,,4y(X)<(n,)<y(X) + fl,4Y(X) (i= 1, ...,
simultaneously. Then, as N, we have

N-A*(N)
(k lit

(2)-/
,= ., e-/dx"

This lemma corresponds to Lemma 7 in [1]. It can also be proved
by (1) that

{(n,)--(n,)}=O(N- log log log N).
1+ +n=

The theorem now ollows from this, (1), and Lemma 9 by similar way
as the proofs of Lemmas 8 and 9 in [1].

We could prove the theorem by induction on k. By this, however,
the proof will not essentially be shortened.

The author expresses his thanks to Prof. S. Iyanaga for his kind
advices.

References

1 M. Tanaka: On the number of prime factors of integers. II. J. Math. Soc.
Japan, 9, 171-191 (1957).

2 : Some results on additive number theory. I. Proc. Japan Acad., $2,
177-179 (1976).


