117. On the Number of Squares in an Arithmetic Progression

By Saburô Uchiyama
Department of Mathematics, Okayama University, Okayama, Japan

(Communicated by Kenjiro Shoda, M. J. A., Oct. 12, 1976)

Let a and b be arbitrary integers with $a>0$ and $b \geqq 0$. For any real number $x>0$ we denote by $A(x ; a, b)$ the number of those integers $a n+b, 0 \leqq n \leqq x$, which are squares of an integer. P. Erdös [1; Problem 16] has conjectured that to every $\varepsilon>0$ there corresponds a number x_{0} $=x_{0}(\varepsilon)$ such that we have
(1)

$$
A(x ; a, b)<\varepsilon x \quad \text { for } x>x_{0} .
$$

He also notes there that W. Rudin has conjectured the existence of an absolute constant $c>0$ such that

$$
\begin{equation*}
A(x ; a, b)<c \sqrt{x} \quad \text { for } x \geqq 1 . \tag{2}
\end{equation*}
$$

Recently, E. Szemerédi [3] has given a very short proof of (1) by noticing that there are no four squares that form an arithmetic progression, which is a well-known observation due to L. Euler, and by appealing to the result of his to the effect that every infinite sequence of non-negative integers that has positive upper density contains an arithmetic progression of four elements (cf. [2], and also [4]). However, the argument in [2] (and in [4] as well) is elementary but by no means simple, nor straightforward.

1. We shall first give another simple and elementary proof of (1). There is no loss in generality in assuming that $a>b$. Every nonnegative integer belongs to one and only one arithmetic progression of the form $a n+b(n \geqq 0)$, where a is fixed and $0 \leqq b<a$. Hence we have

$$
\sum_{b=0}^{a-1} A(x ; a, b)=[\sqrt{a x+a-1}]+1 \quad(x>0)
$$

where $[t]$ denotes the greatest integer not exceeding the real number t; this implies that

$$
A(x ; a, b) \leqq \sqrt{a x+a-1}+1 \quad(x>0)
$$

for any a and b with $a>b \geqq 0$, since we always have $A(x ; a, b) \geqq 0$. This clearly proves (1).

We plainly have $A(x ; a, b)=0(x>0)$, if b is a quadratic non-residue $(\bmod a)$.
2. Now, given a and b, we write $(a, b)=d=e^{2} f, a=d a_{0}$ and $b=d b_{0}$. Here, (a, b) denotes the greatest common divisor of a and b, and e^{2} is the largest square factor of d, so that f is a squarefree integer. Our
main result in this note is the following
Theorem. We have for $x>0$

$$
\left|A(x ; a, b)-\frac{N(a, b)}{a}(\sqrt{a x+b}-\sqrt{b})\right| \leqq \frac{N(a, b)}{e},
$$

where $N(k, l)$ denotes for integers $k>0$ and l the number of incongruent solutions $u(\bmod k)$ of the congruence $u^{2} \equiv l(\bmod k)$.

Note. If $(k, l)=1$ then we have

$$
N(k, l)=2^{\lambda} \prod_{\substack{p, k \\ p>2, \text { prime }}}\left(1+\left(\frac{l}{p}\right)\right),
$$

where $\lambda=0,1$ or 2 according as $2^{2} \nmid k, 2^{2} \| k$ or $2^{3} \mid k$, and (l / p) is the Legendre symbol for quadratic residuarity. In particular, $N(k, l)=0$ unless l is a quadratic residue $(\bmod k)$. Also, we have

$$
N(a, b)=e N\left(a_{0}, f b_{0}\right) ;
$$

this follows from the fact that b is a quadratic residue $(\bmod a)$ if and only if $\left(f, a_{0}\right)=1$ and $f b_{0}$ is a quadratic residue $\left(\bmod a_{0}\right)$.

Proof of the theorem. We have

$$
\begin{aligned}
& A(x ; a, b)=\sum_{\substack{0 \leq n \leq x \\
a n+b=m^{2}}} 1 \sum_{\substack{u 2=b(\bmod a) \\
0 \leq u<a}} \sum_{\substack{m=u \bmod a) \\
\sqrt{b \leq m} \sqrt{a x+b}}} 1 \\
& =\sum_{\substack{2 \\
v^{2}=f b_{0}\left(\text { mod } a_{0}\right) \\
0 \leq v a_{0}}}\left(\left[\frac{\sqrt{a x+b}}{e f a_{0}}-\frac{v}{a_{0}}\right]+\left[\frac{v}{a_{0}}-\frac{\sqrt{b}}{e f a_{0}}\right]+1\right) \\
& =\frac{\sqrt{a \leq v<a_{0}}}{e f a_{0}} N\left(a_{0}, f b_{0}\right)+R(a, b) \text {, }
\end{aligned}
$$

where

$$
R(a, b)=-\sum_{\substack{\left.v^{2} \equiv f b_{b o(m o d} a_{0}\right) \\ 0 \leq v<a_{0}}}\left(\psi\left(\frac{\sqrt{a x+b}}{e f a_{0}}-\frac{v}{a_{0}}\right)+\psi\left(\frac{v}{a_{0}}-\frac{\sqrt{b}}{e f a_{0}}\right)\right) .
$$

Here, we have set $\psi(t)=t-[t]-(1 / 2)$ for real t. Since $|\psi(t)| \leqq 1 / 2$ for all t, we have

$$
\begin{equation*}
|R(a, b)| \leqq N\left(a_{0}, f b_{0}\right), \tag{3}
\end{equation*}
$$

which concludes the proof of our theorem. It seems difficult to give a finer estimate for $R(a, b)$ than (3).

A crude estimate for $N\left(a_{0}, f b_{0}\right)$ is given by

$$
N\left(a_{0}, f b_{0}\right)=O\left(a_{0}^{\varepsilon}\right) \quad \text { for any fixed } \varepsilon>0
$$

the O-constant being dependent of ε. It follows from this that

$$
A(x ; a, b)=O\left(a_{0}^{s}\left(\sqrt{\frac{x}{a_{0}}}+1\right)\right) \quad(x>0) ;
$$

this inequality is in general stronger than (2) for large values of x but it is weaker than (2) for small values of x.

References

[1] P. Erdös: Quelques problèmes de la théorie des nombres. Monographies de L'Enseignement Mathématique, No. 6 (undated).
[2] E. Szemerédi: On sets of integers containing no four elements in arithmetic progression. Acta Math. Acad. Sci. Hungar., 20, 89-109 (1969).
[3] -: The number of squares in an arithmetic progression. Studia Sci. Math. Hungar., 9, 417 (1974).
[4] - O: On sets of integers no k elements in arithmetic progression. Acta Arith., 27, 199-245 (1975).

