# 135. Tensor Products of Positive Definite Quadratic Forms 

By Yoshiyuki Kitaoka<br>Department of Mathematics, Nagoya University<br>(Communicated by Kenjiro Shoda, m. J. A., Nov. 12, 1976)

Let $L, M, N$ be positive definite quadratic lattices over $Z$. Our aim is to give some affirmative answers for the following two problems:
i) If $M, N$ are indecomposable, then is $M \otimes N$ indecomposable?
ii) If $L \otimes M$ is isometric to $L \otimes N$, then is $M$ isometric to $N$ ?

Definitions and notations. By a positive definite quadradic lattice we mean a lattice $L$ of a positive definite quadratic space $V$ over the rational number field $\boldsymbol{Q}(\operatorname{rank} L=\operatorname{dim} V)$.

Let $L$ be a positive definite quadradic lattice; then $m(L)$ denotes $\min Q(x)$, where $Q$ is the quadratic form of $L$ and $x$ runs over non-zero elements of $L$, and moreover we call an element $x$ of $L$ a minimal vector of $L$ if $Q(x)=m(L) . \quad \mathfrak{m}(L)$ denotes the set of all minimal vectors of $L$, and $\tilde{L}$ is by definition the submodule of $L$ spanned by all minimal vectors of $L$.

Let $L, M$ be positive definite quadratic lattices with bilinear forms $B_{L}, B_{M}$ respectively. Then the tensor product $L \otimes M$ over $Z$ is a positive definite quadratic lattice with bilinear form $B$ such that $B\left(x_{1} \otimes y_{1}\right.$, $\left.x_{2} \otimes y_{2}\right)=B_{L}\left(x_{1}, x_{2}\right) B_{M}\left(y_{1}, y_{2}\right)$ for any $x_{i} \in L, y_{i} \in M$.

Through this note $Q(x), B(x, y)$ denote quadratic forms and corresponding bilinear forms $(2 B(x, y)=Q(x+y)-Q(x)-Q(y))$, and notations and terminologies will be those of O'Meara [2].
§ 1. Positive definite quadratic lattices of $E$-type and their properties.

Definition. Let $L$ be a positive definite quadratic lattice. We say that $L$ is of $E$-type if every minimal vector of $L \otimes M$ is of the form $x \otimes y(x \in L, y \in M)$ for any positive definite quadratic lattice $M$.

Theorem. (i) If $L_{1}, L_{2}$ are of $E$-type*, then $L_{1} \perp L_{2}, L_{1} \otimes L_{2}$ are of E-type.
(ii) If $L$ is of E-type and if $L_{1}$ is a submodule of $L$ with $m\left(L_{1}\right)$ $=m(L)$, then $L_{1}$ is of E-type.
(iii) If $L$ is a positive definite quadratic lattice such that either $m(L) \leq 6$ and the scale $s L$ of $L \subseteq Z$, or rank $L \leq 42$, then $L$ is of $E$-type. This is proved in [1].
§2. Theorem. Let $L$ be an indecomposable positive definite

[^0]quadratic lattice of E-type with $[L ; \tilde{L}]<\infty$. Then for any indecomposable positive definite quadratic lattice $M, L \otimes M$ is indecomposable.

Lemma. Let L, M, N be positive definite quadratic lattices and assume that $L$ is indecomposable. Suppose that $\sigma$ is an isometry from $L \otimes M$ on $L \otimes N$ satisfying that
(*) there are sublattices $M^{\prime}$ of $M$ and $N^{\prime}$ of $N$ with $\left[M: M^{\prime}\right]<\infty$, $\left[N: N^{\prime}\right]<\infty$ such that $M^{\prime}=M_{1}^{\prime} \perp \cdots \perp M_{n}^{\prime}, N^{\prime}=N_{1}^{\prime} \perp \cdots \perp N_{n}^{\prime}$ and $\sigma$ $=\sigma_{i}^{\prime} \otimes \mu_{i}^{\prime}$ on $L \otimes M_{i}^{\prime}$ where $\sigma_{i}^{\prime} \in 0(L)$ and $\mu_{i}^{\prime}$ is an isometry from $M_{i}^{\prime}$ on $N_{i}^{\prime}$.

Then there are decompositions $M=M_{1} \perp \cdots \perp M_{m}, N=N_{1} \perp \cdots \perp N_{m}$ such that $\sigma=\sigma_{i} \otimes \mu_{i}$ on $L \otimes M_{i}$ where $\sigma_{i} \in 0(L)$ and $\mu_{i}$ is an isometry from $M_{i}$ on $N_{i}$.

Lemma. Let $L, M, N$ be positive definite quadratic lattices, and assume that $[L: \tilde{L}],[M: \tilde{M}],[N: \tilde{N}]<\infty$ and $\tilde{L}, \tilde{M}, \tilde{N}$ are indecomposable, and that either $M, N$ are of E-type or $L$ is of E-type. If an isometry $\sigma$ from $L \otimes M$ on $L \otimes N$ satisfies $\sigma(L \otimes u)=L \otimes v$ for some $0 \neq u \in M$, $v \in N$ or $\sigma(l \otimes M)=l^{\prime} \otimes N$ for some $0 \neq l, l^{\prime} \in L$, then $\sigma=\alpha \otimes \mu$ where $\alpha \in 0(L), \mu$ is an isometry from $M$ on $N$.

Definition. For positive definite quadratic lattices $M$, the definition of "generic" is defined inductively as follows: If $\operatorname{rank} M=1$, then $M$ is generic. When rank $M \geq 2, M$ is generic if and only if $\mathfrak{m}(M)=\{ \pm u\}$ and $u^{\perp}$ is generic.

Theorem. Let $L$ be an indecomposable positive definite quadratic lattice of $E$-type with $[L: \tilde{L}]<\infty$. Let $M, N$ be positive definite quadratic lattices and assume that $M$ is generic. For any isometry $\sigma$ from $L \otimes M$ on $L \otimes N$, there are decompositions $M=\perp_{i=1}^{n} M_{i}, N$ $=\perp_{i=1}^{n} N_{i}$ such that $\sigma=\sigma_{i} \otimes \mu_{i}$ on $L \otimes M_{i}$ where $\sigma_{i} \in 0(L)$ and $\mu_{i}$ is an isometry from $M_{i}$ on $N_{i}$.

Theorem. Let $L, M, N$ be positive definite quadratic lattices with $[L: \tilde{L}],[M: \tilde{M}],[N: \tilde{N}]<\infty$, and let $\tilde{L}, M, N$ be indecomposable. Assume that $M, N$ are of $E$-type or $L$ is of $E$-type, and moreover
$\{|B(x, y)| / m(L) ; x, y \in \mathfrak{m}(L)\} \cap\{|B(x, y)| / m(M) ; x, y \in \mathfrak{m}(M)\} \subset\{0,1\}$,
$\{|B(x, y)| / m(L) ; x, y \in \mathfrak{m t}(L)\} \cap\{|B(x, y)| / m(N) ; x, y \in \mathfrak{m}(N)\} \subset\{0,1\}$.
Then an isometry $\sigma$ from $L \otimes M$ on $L \otimes N$ is of the form $\alpha \otimes \mu$ where $\alpha \in 0(L), \mu$ is an isometry $M$ on $N$.

Theorem. Let $L$ be a positive definite quadratic lattice with the scale $s L=Z$ and $m(L)=2$. Assume that $\tilde{L}$ is indecomposable and $[L: \tilde{L}]<\infty$. Let $M, N$ be positive definite quadratic lattices with $[M ; \tilde{M}],[N: \tilde{N}]<\infty$.

Suppose that $\sigma$ is an isometry from $L \otimes M$ on $L \otimes N$. Then for any $u \in \mathfrak{m}(M)$, we have i) $\sigma(L \otimes u)=L \otimes v$ for some $v \in \mathfrak{m}(N)$, or ii) $\sigma(L \otimes u)$ $\subset w \otimes N$ for some $w \in \mathfrak{m}(L)$. If, moreover, the case i) does not happen for any $u \in \mathfrak{m}(M)$, then $M, N$ are isometric to $L \otimes K_{1}, L \otimes K_{2}$ respectively where $K_{1}, K_{2}$ are positive definite quadratic lattices.

Remark. Theorem is not true without the assumptions $s L=Z$, $m(L)=2$.

Corollary 1. Let L be a quadratic lattice in Theorem, and let $M$, $N$ be positive definite quadratic lattices with rank $M \leq r a n k L$. If $\sigma$ is an isometry from $L \otimes M$ on $L \otimes N$, then $M$ is isometric to $N$ and moreover there are decompositions $M=M_{1} \perp \cdots \perp M_{n}, N=N_{1} \perp \cdots \perp N_{n}$ such that $\sigma=\sigma_{i} \otimes \mu_{i}$ on $L \otimes M_{i}$ where $\sigma_{i} \in 0(L)$ and $\mu_{i}$ is an isometry from $M_{i}$ on $N_{i}$ unless $M \cong N \cong L^{a}$ (scaling of $L$ ).

Corollary 2. Let $L$ be an indecomposable positive definite quadratic lattice with $s L=Z, m(L)=2$ and $[L: \tilde{L}]<\infty$. Let $M, N$ be binary positive definite quadratic lattices. If $L \otimes M$ is isometric to $L \otimes N$, then $M$ is isometric to $N$.

Corollary 3. Let $L$ be a positive definite quadratic lattice in Theorem. Let $M, N$ be positive definite quadratic lattices. Assume that $\tilde{M}$ is indecomposable with $[M: \tilde{M}]<\infty$, and $M$ is not of the form $L \otimes K$. If $\sigma$ is an isometry from $L \otimes M$ on $L \otimes N$, then $\sigma=\alpha \otimes \mu$ where $\alpha \in 0(L)$ and $\mu$ is an isometry from $M$ on $N$.

The detailed proof will be published elsewhere.

## References

[1] Y. Kitaoka: Scalar extension of quadratic lattice. II (to appear).
[2]
O. T. O’Meara: Introduction to Quadratic Forms. Springer-Verlag (1963).


[^0]:    *) When we say that $L$ is of $E$-type, $L$ is assumed to be a poitive definite quadratic lattice.

