135. Tensor Products of Positive Definite Quadratic Forms

By Yoshiyuki KITAOKA

Department of Mathematics, Nagoya University

(Communicated by Kenjiro SHODA, M. J. A., Nov. 12, 1976)

Let L, M, N be positive definite quadratic lattices over Z. Our aim is to give some affirmative answers for the following two problems:

i) If M, N are indecomposable, then is $M \otimes N$ indecomposable?

ii) If $L \otimes M$ is isometric to $L \otimes N$, then is M isometric to N?

Definitions and notations. By a positive definite quadradic lattice we mean a lattice L of a positive definite quadratic space V over the rational number field Q (rank $L = \dim V$).

Let L be a positive definite quadradic lattice; then m(L) denotes min Q(x), where Q is the quadratic form of L and x runs over non-zero elements of L, and moreover we call an element x of L a minimal vector of L if Q(x) = m(L). m(L) denotes the set of all minimal vectors of L, and \tilde{L} is by definition the submodule of L spanned by all minimal vectors of L.

Let L, M be positive definite quadratic lattices with bilinear forms B_L, B_M respectively. Then the tensor product $L \otimes M$ over Z is a positive definite quadratic lattice with bilinear form B such that $B(x_1 \otimes y_1, x_2 \otimes y_2) = B_L(x_1, x_2) B_M(y_1, y_2)$ for any $x_i \in L, y_i \in M$.

Through this note Q(x), B(x, y) denote quadratic forms and corresponding bilinear forms (2B(x, y) = Q(x+y) - Q(x) - Q(y)), and notations and terminologies will be those of O'Meara [2].

§ 1. Positive definite quadratic lattices of E-type and their properties.

Definition. Let L be a positive definite quadratic lattice. We say that L is of E-type if every minimal vector of $L \otimes M$ is of the form $x \otimes y$ ($x \in L, y \in M$) for any positive definite quadratic lattice M.

Theorem. (i) If L_1, L_2 are of E-type*, then $L_1 \perp L_2, L_1 \otimes L_2$ are of E-type.

(ii) If L is of E-type and if L_1 is a submodule of L with $m(L_1) = m(L)$, then L_1 is of E-type.

(iii) If L is a positive definite quadratic lattice such that either $m(L) \leq 6$ and the scale sL of $L \subseteq Z$, or rank $L \leq 42$, then L is of E-type. This is proved in [1].

§ 2. Theorem. Let L be an indecomposable positive definite

^{*)} When we say that L is of E-type, L is assumed to be a poitive definite quadratic lattice.

quadratic lattice of E-type with $[L; \tilde{L}] < \infty$. Then for any indecomposable positive definite quadratic lattice $M, L \otimes M$ is indecomposable.

Lemma. Let L, M, N be positive definite quadratic lattices and assume that L is indecomposable. Suppose that σ is an isometry from $L \otimes M$ on $L \otimes N$ satisfying that

(*) there are sublattices M' of M and N' of N with $[M:M'] < \infty$, $[N:N'] < \infty$ such that $M' = M'_1 \perp \cdots \perp M'_n$, $N' = N'_1 \perp \cdots \perp N'_n$ and σ $= \sigma'_i \otimes \mu'_i$ on $L \otimes M'_i$ where $\sigma'_i \in O(L)$ and μ'_i is an isometry from M'_i on N'_i .

Then there are decompositions $M = M_1 \perp \cdots \perp M_m$, $N = N_1 \perp \cdots \perp N_m$ such that $\sigma = \sigma_i \otimes \mu_i$ on $L \otimes M_i$ where $\sigma_i \in O(L)$ and μ_i is an isometry from M_i on N_i .

Lemma. Let L, M, N be positive definite quadratic lattices, and assume that $[L: \tilde{L}], [M: \tilde{M}], [N: \tilde{N}] < \infty$ and $\tilde{L}, \tilde{M}, \tilde{N}$ are indecomposable, and that either M, N are of E-type or L is of E-type. If an isometry σ from $L \otimes M$ on $L \otimes N$ satisfies $\sigma(L \otimes u) = L \otimes v$ for some $0 \neq u \in M$, $v \in N$ or $\sigma(l \otimes M) = l' \otimes N$ for some $0 \neq l$, $l' \in L$, then $\sigma = \alpha \otimes \mu$ where $\alpha \in O(L), \mu$ is an isometry from M on N.

Definition. For positive definite quadratic lattices M, the definition of "generic" is defined inductively as follows: If rank M=1, then M is generic. When rank $M \ge 2$, M is generic if and only if $\mathfrak{m}(M) = \{\pm u\}$ and u^{\perp} is generic.

Theorem. Let L be an indecomposable positive definite quadratic lattice of E-type with $[L:\tilde{L}] < \infty$. Let M, N be positive definite quadratic lattices and assume that M is generic. For any isometry σ from $L \otimes M$ on $L \otimes N$, there are decompositions $M = \prod_{i=1}^{n} M_i$, N $= \prod_{i=1}^{n} N_i$ such that $\sigma = \sigma_i \otimes \mu_i$ on $L \otimes M_i$ where $\sigma_i \in O(L)$ and μ_i is an isometry from M_i on N_i .

Theorem. Let L, M, N be positive definite quadratic lattices with $[L: \tilde{L}], [M: \tilde{M}], [N: \tilde{N}] < \infty$, and let \tilde{L}, M, N be indecomposable. Assume that M, N are of E-type or L is of E-type, and moreover

 $\{|B(x, y)|/m(L); x, y \in \mathfrak{m}(L)\} \cap \{|B(x, y)|/m(M); x, y \in \mathfrak{m}(M)\} \subset \{0, 1\},\$

 $\{|B(x, y)|/m(L); x, y \in \mathfrak{m}(L)\} \cap \{|B(x, y)|/m(N); x, y \in \mathfrak{m}(N)\} \subset \{0, 1\}.$

Then an isometry σ from $L \otimes M$ on $L \otimes N$ is of the form $\alpha \otimes \mu$ where $\alpha \in O(L)$, μ is an isometry M on N.

Theorem. Let L be a positive definite quadratic lattice with the scale sL=Z and m(L)=2. Assume that \tilde{L} is indecomposable and $[L:\tilde{L}]<\infty$. Let M,N be positive definite quadratic lattices with $[M;\tilde{M}], [N:\tilde{N}]<\infty$.

Suppose that σ is an isometry from $L \otimes M$ on $L \otimes N$. Then for any $u \in \mathfrak{m}(M)$, we have i) $\sigma(L \otimes u) = L \otimes v$ for some $v \in \mathfrak{m}(N)$, or ii) $\sigma(L \otimes u) = \Box \otimes v$ for some $v \in \mathfrak{m}(N)$, or ii) $\sigma(L \otimes u) = \Box \otimes v \otimes N$ for some $w \in \mathfrak{m}(L)$. If, moreover, the case i) does not happen for any $u \in \mathfrak{m}(M)$, then M, N are isometric to $L \otimes K_1$, $L \otimes K_2$ respectively where K_1 , K_2 are positive definite quadratic lattices.

Y. KITAOKA

Remark. Theorem is not true without the assumptions sL=Z, m(L)=2.

Corollary 1. Let L be a quadratic lattice in Theorem, and let M, N be positive definite quadratic lattices with rank $M \leq \operatorname{rank} L$. If σ is an isometry from $L \otimes M$ on $L \otimes N$, then M is isometric to N and moreover there are decompositions $M = M_1 \perp \cdots \perp M_n$, $N = N_1 \perp \cdots \perp N_n$ such that $\sigma = \sigma_i \otimes \mu_i$ on $L \otimes M_i$ where $\sigma_i \in O(L)$ and μ_i is an isometry from M_i on N_i unless $M \cong N \cong L^a$ (scaling of L).

Corollary 2. Let L be an indecomposable positive definite quadratic lattice with sL=Z, m(L)=2 and $[L:\tilde{L}]<\infty$. Let M, N be binary positive definite quadratic lattices. If $L\otimes M$ is isometric to $L\otimes N$, then M is isometric to N.

Corollary 3. Let L be a positive definite quadratic lattice in Theorem. Let M, N be positive definite quadratic lattices. Assume that \tilde{M} is indecomposable with $[M:\tilde{M}] \leq \infty$, and M is not of the form $L \otimes K$. If σ is an isometry from $L \otimes M$ on $L \otimes N$, then $\sigma = \alpha \otimes \mu$ where $\alpha \in O(L)$ and μ is an isometry from M on N.

The detailed proof will be published elsewhere.

References

- [1] Y. Kitaoka: Scalar extension of quadratic lattice. II (to appear).
- [2] O. T. O'Meara: Introduction to Quadratic Forms. Springer-Verlag (1963).