129. On the Sum of the Möbius Function in a Short Segment

By Yoichi MOTOHASHI

Department of Mathematics, College of Science and Technology, Nihon University, Tokyo

(Communicated by Kunihiko Kodaira, M. J. A., Nov. 12, 1976)

1. Let $\mu(n)$ be the Möbius function and let

$$M(x) = \sum_{n \le x} \mu(n)$$
.

Then by the familiar device*)

$$\zeta(s)^{-1} = \zeta(s)^{-1}(1-\zeta(s)H(s))^2 + 2H(s) - \zeta(s)H(s)^2$$

where

$$H(s) = \sum_{n \le y} \mu(n) n^{-s}$$

with certain y, we can prove that there is an absolute constant ϑ , $0 < \vartheta < 1$, such that

(1)
$$M(x+h)-M(x)=o(h) \quad (as x\to\infty)$$

uniformly for $h, x \ge h \ge x^g$. But it seems that by this method it is very difficult to get a result which corresponds to Huxley's estimate [3] of the discrepancy between consecutive primes.

In this note we indicate very briefly that there is an alternative way to prove such a result. Our result is as follows:

Theorem. (1) is true, whenever 9 > 7/12.

2. Now we show only the main steps of our argument.

We have

(2)
$$M(x+h)-M(x)=\frac{1}{2\pi i}\int_{l}\zeta(s)^{-1}((x+h)^{s}-x^{s})s^{-1}ds+O(x/T),$$

where l is the straight line connecting the points $1-\delta+iT$ and $1-\delta-iT$, T being sufficiently large and $\delta=(\log T)^{-2/3-\epsilon}$ with arbitrary small positive constant ϵ . Here we have used Vinogradov's estimate of the zero-free region of $\zeta(s)$. Let

$$\mathcal{Q} = \bigcup_{j=0}^{J} \bigcup_{k=-K}^{K} \Delta(j,k),$$

where $J = [(1/2 - \delta) \log T]$, $K = [T(\log T)^{-1}]$ and

$$\Delta(j,k) = \{s = \sigma + it ; \sigma_j \leq \sigma < \sigma_{j+1}, k(\log T) \leq t < (k+1) \log T\},$$

 σ_j being $1/2+j(\log T)^{-1}$. We divide $\Delta(j,k)$ into two classes (W) and (Y) as follows: When $\sigma_j \leq 1-\varepsilon$, then $\Delta(j,k) \in (W)$ if and only if $\Delta(j,k)$ contains at least one zero of $\zeta(s)$, and the remaining rectangles go into

^{*)} In recent literature this kind of modification has been attributed to Gallagher [1], but this seems originally due to Heilbronn [2].

(Y). On the other hand when $1-\varepsilon < \sigma_j \le 1-\delta$, then $\Delta(j,k) \in (W)$ if and only if there is at least one $s \in \Delta(j,k)$ such that

$$|\zeta(s)G_{i}(s)| \leq 1/2$$
,

where

$$G_{j}(s) = \sum_{n \leq X_{f}} \mu(n) n^{-s},$$

$$X_{j} = \left\{ (\log T)^{\delta} \max_{\substack{\sigma \geq 4\sigma_{j} - 3 \ 1 \leq |t| \leq T}} |\zeta(s)| \right\}^{1/(2(1-\sigma_{f}))},$$

and $\Delta(j, k) \in (Y)$ if and only if for all $s \in \Delta(j, k)$

$$|\zeta(s)G_j(s)| \ge 1/2.$$

Then by Huxley [3] we have

$$(4) #\{k; \Delta(j,k) \in (W)\} \ll T^{12(1-\sigma_j)/5}(\log T)^9$$

if $\sigma_j \leq 1-\varepsilon$. And by the argument of Montgomery [4; pp. 110–112] we have, if $1-\varepsilon < \sigma_j \leq 1-\delta$,

where we have used Richert's estimate [5].

Now let $j_k = \text{Max}\{j; \Delta(j, k) \in (W)\}$, and let

$$\mathscr{D}' = \bigcup_{k=-K}^K \bigcup_{j \leq j_k} \Delta(j,k).$$

Further let $\mathcal{D}_0 = \mathcal{D} - \mathcal{D}'$. We write in \mathcal{D}_0 the line L which consists of vertical and horizontal segments: The horizontal segments keep the distances $\log \log T$ from \mathcal{D}' . And the vertical segments keep the distances ε^2 if $\sigma \leq 1 - \varepsilon$, and $(\log T)^{-1}$ if $1 - \varepsilon < \sigma \leq 1 - \delta$. Then as in [6; pp. 282–283] we have, appealing to the Borel-Carathéodory and Hadamard's three circle theorems,

$$\zeta(s)^{-1} \ll \exp\left((\log T)^{1-\varepsilon^2}\right)$$

if $s \in L$ and $\sigma \leq 1 - \varepsilon + \varepsilon^2$. Also by (3) we have

$$\zeta(s)^{-1} \ll G_j(s) \ll X_j^{1-\sigma_j} \log T$$

$$\ll \exp(c(1-\sigma_1)^{3/2}\log T)(\log T)^4$$

if $s \in L$ and $1-\varepsilon < \sigma_j \le \sigma < \sigma_{j+1}$. Thus we see that we have, for all $s \in L$, $\zeta(s)^{-1} \ll \exp(c\sqrt{\varepsilon}(1-\sigma)\log T)(\log T)^4$.

Now, returning to (2) and observing (4), (5), we have

$$\begin{split} M(x+h) - M(x) & \ll h \int_{L} |\zeta(s)^{-1}| \ x^{\sigma-1} \ |ds| + O(x/T) \\ & \ll h x^{\epsilon^2} (\log T)^{13} \sum_{j=0}^{J_1} \exp\left((1-\sigma_j)((12/5 + c\sqrt{\varepsilon})\log T - \log x)\right) \\ & + h (\log T)^{22} \sum_{j=J_1+1}^{J} \exp\left((1-\sigma_j)(2c\sqrt{\varepsilon}\log T - \log x)\right) \\ & + O(x/T), \end{split}$$

where $J_1 = [(1/2 - \varepsilon) \log T]$.

Finally setting $T = \exp((5/12)(1 - c\sqrt{\varepsilon}/12) \log x)$ we end the proof. Concluding remark. Similarly, but much easier than, we can

prove, denoting by p_n the n-th prime,

$$p_{n+1} - p_n < p_n^{7/12} (\log p_n)^{25}$$

for sufficiently large n.

References

- [1] P. X. Gallagher: Bombieri's mean value theorem. Mathematika, 15, 1-6 (1968).
- [2] H. Heilbronn: Über den Primzahlsatz von Herrn Hoheisel. Math. Zeitschr., 36, 394-423 (1933).
- [3] M. N. Huxley: On the difference between consecutive primes. Invent. Math., 15, 164-170 (1972).
- [4] H. L. Montgomery: Topics in Multiplicative Number Theory. Springer (1971).
- [5] H. E. Richert: Zur Abschatzung der Riemannschen Zetafunktion in der Nähe der Vertikalen $\sigma=1$. Math. Ann., **169**, 97–101 (1967).
- [6] E. C. Titchmarsh: The Theory of the Riemann Zeta-Function. Oxford Univ. (1951).