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1. Let if(n) be the MSbius function and let
M(x) if(n).

Then by the fmiliar device*
(s)-I (s)-l(1--(s)H(s)) + 2H(s)--(s)H(s),

where
H(s) . ff(n)n-ny

with certain y, we can prove that there is an absolute constant 0, 0<8
< 1, such that
( 1 ) M(x/h)--M(x)=o(h) (as xooo)
uniformly for h, x>=h>=x. But it seems that by this method it is very
difficult to get a result which corresponds to Huxley’s estimate [3] of
the discrepancy between consecutive primes.

In this note we indicate very briefly that there is an alternative
way to prove such a result. Our result is as follows"

Theorem. (1) is true, whenever 0::>7/12.
2. Now we show only the main steps of our argument.

We have
1 (s)_((x+ h)8_ xS)s_ids + O(x/T),( 2 ) M(x+ h) M(x)

where is the straight line connecting the points 1--3+iT and 1--
--iT, T being sufficiently large and =(log T)-m-" with arbitrary small
positive constant e. Here we have used Vinogradov’s estimate of the
zero-free region of if(s). Let

J K

..=U U (],k),
ffi0 ffi-K

where J-----[(1/2--) log T], K--IT(log T)-q and
A(], )--(=a+ig +,(log T)t<(/ 1) log T),

a being 1/2+ j(log T)-. We divide A(], k) into two classes (W) and (Y)
as follows" When ajl--, then A(],lc)e (W) if and only if A(],k)
contains at least one zero of (s), and the remaining rectangles go into

* In recent literature this kind of modification has been attributed to
Gallagher [1], but this seems originally due to Heilbronn [2].
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(Y). On the other hand when 1--<a_<l--, then (],/) e (W) if and
only if there is at least one s e l(],/) such that

where
G(s)= ]/(n)n-,

n’X

X (log T) Max I(s)
a-4a.t--3

and zl(], k) e (Y) if and only if for all s e (], k)
( 3 ) (s)G(s) 1/2.
Then by Huxley [3] we have
( 4 ) {; (], ) e (W)}(( T-"(log T)"
if ag1--. And by the argument of Montgomery [4 pp. 110-112] we
have, if 1--al--,

( 5 ) {k (], k) e (W)} (( -"(log T)"
(( T-"(log T)TM,

where we have used Richert’s estimate [5].
Now let ] Max {] (], k) e (W)}, and let

’= (], ).

Further let 0=--’. We write in 0 the line L which consists of
vertical and horizontal segments" The horizontal segments keep the
distances log log T from ’. And the vertical segments keep the dis-
tances if al--, and (log T)- if 1-al-. Then as in [6; pp.
282-283] we have, appealing to the Borel-Carathodory and Hadamard’s
three circle theorems,

(s)-((exp ((log T)-)
if s e L and al-e+ e. Also by (3) we have

(s)- (( G(s)((X.- log T
((exp (c(1--a)m log T)(log T)

if s e L and 1-<aa<a+. Thus we see that we have, for all s e L,
(s)-((exp (c(1--a) log T)(log T)’.

Now, returning to (2) and observing (4), (5), we have

M(x+ h) M(x) (( h . (s)- x- ds + O(x / T)
J

(( h’(log T) exp ((1--a)((12/5+ c) log T--log x))
j=O

J

+h(log T) exp ((1--a)(2clog T--log x))
j=J+l

+O(x/T),
where J [(1/2--D log T].

Finally setting T=exp ((5/12)(1--c/12) log x) we end the proof.
Concluding remark. Similarly, but much easier than, we can
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prove, denoting by p the n-th prime,
Pn+1 Pn <P/12(1og P)2

for sufficiently large n.
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