129. On the Sum of the Möbius Function in a Short Segment

By Yoichi Motohashi
Department of Mathematics, College of Science and Technology, Nihon University, Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., Nov. 12, 1976)

1. Let $\mu(n)$ be the Möbius function and let

$$
M(x)=\sum_{n \leq x} \mu(n) .
$$

Then by the familiar device*)

$$
\zeta(s)^{-1}=\zeta(s)^{-1}(1-\zeta(s) H(s))^{2}+2 H(s)-\zeta(s) H(s)^{2},
$$

where

$$
H(s)=\sum_{n \leq y} \mu(n) n^{-s}
$$

with certain y, we can prove that there is an absolute constant $\vartheta, 0<\vartheta$ <1, such that
(1) $\quad M(x+h)-M(x)=o(h) \quad$ (as $x \rightarrow \infty)$
uniformly for $h, x \geqq h \geqq x^{9}$. But it seems that by this method it is very difficult to get a result which corresponds to Huxley's estimate [3] of the discrepancy between consecutive primes.

In this note we indicate very briefly that there is an alternative way to prove such a result. Our result is as follows:

Theorem. (1) is true, whenever $\vartheta>7 / 12$.
2. Now we show only the main steps of our argument.

We have

$$
\begin{equation*}
M(x+h)-M(x)=\frac{1}{2 \pi i} \int_{l} \zeta(s)^{-1}\left((x+h)^{s}-x^{s}\right) s^{-1} d s+O(x / T) \tag{2}
\end{equation*}
$$

where l is the straight line connecting the points $1-\delta+i T$ and $1-\delta$ $-i T, T$ being sufficiently large and $\delta=(\log T)^{-2 / 3-s}$ with arbitrary small positive constant ε. Here we have used Vinogradov's estimate of the zero-free region of $\zeta(s)$. Let

$$
\mathscr{D}=\bigcup_{j=0}^{J} \bigcup_{k=-K}^{K} \Delta(j, k),
$$

where $J=[(1 / 2-\delta) \log T], K=\left[T(\log T)^{-1}\right]$ and

$$
\Delta(j, k)=\left\{s=\sigma+i t ; \sigma_{j} \leqq \sigma<\sigma_{j+1}, k(\log T) \leqq t<(k+1) \log T\right\},
$$

σ_{j} being $1 / 2+j(\log T)^{-1}$. We divide $\Delta(j, k)$ into two classes (W) and (Y) as follows: When $\sigma_{j} \leqq 1-\varepsilon$, then $\Delta(j, k) \in(W)$ if and only if $\Delta(j, k)$ contains at least one zero of $\zeta(s)$, and the remaining rectangles go into

[^0](Y). On the other hand when $1-\varepsilon<\sigma_{j} \leqq 1-\delta$, then $\Delta(j, k) \in(W)$ if and only if there is at least one $s \in \Delta(j, k)$ such that
$$
\left|\zeta(s) G_{j}(s)\right|<1 / 2,
$$
where
\[

$$
\begin{gathered}
G_{j}(s)=\sum_{n \leq X_{j}} \mu(n) n^{-s}, \\
X_{j}=\left\{(\log T)^{s} \operatorname{Max}_{\substack{\sigma \leq 4 \sigma_{j}-3 \\
1 \leq 1 \mid \leq T}}|\zeta(s)|\right\}^{1 /\left(2\left(1-\sigma_{j}\right)\right)},
\end{gathered}
$$
\]

and $\Delta(j, k) \in(Y)$ if and only if for all $s \in \Delta(j, k)$
(3)

$$
\left|\zeta(s) G_{j}(s)\right| \geqq 1 / 2
$$

Then by Huxley [3] we have
(4) $\quad \#\{k ; \Delta(j, k) \in(W)\} \lll T^{12\left(1-\sigma_{j}\right) / 5}(\log T)^{9}$
if $\sigma_{j} \leqq 1-\varepsilon$. And by the argument of Montgomery [4; pp. 110-112] we have, if $1-\varepsilon<\sigma_{j} \leqq 1-\delta$,

$$
\begin{align*}
\#\{k ; \Delta(j, k) \in(W)\} & \ll X_{j}^{10\left(1-\sigma_{j}\right) / 3}(\log T)^{6} \tag{5}\\
& <T^{e\left(1-\sigma_{j}\right)^{3 / 2}}(\log T)^{16},
\end{align*}
$$

where we have used Richert's estimate [5].
Now let $j_{k}=\operatorname{Max}\{j ; \Delta(j, k) \in(W)\}$, and let

$$
\mathscr{D}^{\prime}=\bigcup_{k=-K}^{K} \bigcup_{j \leq j_{k}} \Delta(j, k) .
$$

Further let $\mathscr{D}_{0}=\mathscr{D}-\mathscr{D}^{\prime}$. We write in \mathscr{D}_{0} the line L which consists of vertical and horizontal segments: The horizontal segments keep the distances $\log \log T$ from \mathscr{D}^{\prime}. And the vertical segments keep the distances ε^{2} if $\sigma \leqq 1-\varepsilon$, and $(\log T)^{-1}$ if $1-\varepsilon<\sigma \leqq 1-\delta$. Then as in [6; pp. 282-283] we have, appealing to the Borel-Carathéodory and Hadamard's three circle theorems,

$$
\zeta(s)^{-1} \ll \exp \left((\log T)^{1-s^{2}}\right)
$$

if $s \in L$ and $\sigma \leqq 1-\varepsilon+\varepsilon^{2}$. Also by (3) we have

$$
\zeta(s)^{-1} \ll G_{j}(s) \ll X_{j}^{1-\sigma_{j}} \log T
$$

$$
\ll \exp \left(c\left(1-\sigma_{j}\right)^{3 / 2} \log T\right)(\log T)^{4}
$$

if $s \in L$ and $1-\varepsilon<\sigma_{j} \leqq \sigma<\sigma_{j+1}$. Thus we see that we have, for all $s \in L$, $\zeta(s)^{-1} \ll \exp (c \sqrt{\varepsilon}(1-\sigma) \log T)(\log T)^{4}$.
Now, returning to (2) and observing (4), (5), we have

$$
\begin{aligned}
M(x+h)-M(x) \ll & h \int_{L}\left|\zeta(s)^{-1}\right| x^{\sigma-1}|d s|+O(x / T) \\
\ll & h x^{c^{2}(\log T)^{13} \sum_{j=0}^{J_{1}} \exp \left(\left(1-\sigma_{j}\right)((12 / 5+c \sqrt{\varepsilon}) \log T-\log x)\right)} \\
& +h(\log T)^{22} \sum_{j=J_{1}+1}^{J} \exp \left(\left(1-\sigma_{j}\right)(2 c \sqrt{\varepsilon} \log T-\log x)\right) \\
& +O(x / T),
\end{aligned}
$$

where $J_{1}=[(1 / 2-\varepsilon) \log T]$.
Finally setting $T=\exp ((5 / 12)(1-c \sqrt{\varepsilon} / 12) \log x)$ we end the proof.
Concluding remark. Similarly, but much easier than, we can
prove, denoting by p_{n} the n-th prime,

$$
p_{n+1}-p_{n}<p_{n}^{7 / 12}\left(\log p_{n}\right)^{25}
$$

for sufficiently large n.

References

[1] P. X. Gallagher: Bombieri's mean value theorem. Mathematika, 15, 1-6 (1968).
[2] H. Heilbronn: Über den Primzahlsatz von Herrn Hoheisel. Math. Zeitschr., 36, 394-423 (1933).
[3] M. N. Huxley: On the difference between consecutive primes. Invent. Math., 15, 164-170 (1972).
[4] H. L. Montgomery: Topics in Multiplicative Number Theory. Springer (1971).
[5] H. E. Richert: Zur Abschatzung der Riemannschen Zetafunktion in der Nähe der Vertikalen $\sigma=1$. Math. Ann., 169, 97-101 (1967).
[6] E. C. Titchmarsh: The Theory of the Riemann Zeta-Function. Oxford Univ. (1951).

[^0]: *) In recent literature this kind of modification has been attributed to Gallagher [1], but this seems originally due to Heilbronn [2].

