149. On a Pair of Groups and its Sylow Bases

By Zensiro GOSEKI Gunma University

(Communicated by Kenjiro SHODA, M. J. A., Dec. 13, 1976)

Only finite groups are to be considered in this note. Any unexplained notation and terminology should be referred to [1] and [2]. Throughout this note, let A and B be groups such that a pair (A, B: f, g)of groups is well defined, where $f: A \rightarrow B$ and $g: B \rightarrow A$ are homomorphisms and let $|A| = |B| = p_1^{e_1} \cdots p_n^{e_n}$, where the p's are different primes and each e_i is a positive integer. Suppose A is solvable. Then B is also solvable. In this case, we shall call (A, B: f, g) solvable. By P. Hall ([3]), the classical theorems about Sylow subgroups have been extended to the Sylow systems of a solvable group. With respect to (A, B: f, g) which is solvable, we will give the following which are analogous to P. Hall's results. We denote by $\{S_i\}_n$ $(\{T_i\}_n)$ a set of Sylow p_i -subgroups $S_i(T_i)$ of A(B), $i=1, \dots, n$, respectively.

Theorem 1. Let (A, B; f, g) be solvable and $\{S_i\}_n$ a Sylow basis of A. Then there is a Sylow basis $\{T_i\}_n$ of B such that for each $i=1, \ldots, n, (S_i, T_i; f, g)$ is well defined.

The set $\{(S_i, T_i: f, g)\}_n$ given in Theorem 1 is called a Sylow basis of (A, B: f, g).

Theorem 2. Let (A, B: f, g) be solvable, let (M, N: f, g) be a subgroup of (A, B: f, g) and $\{(P_i, Q_i: f, g)\}_m$ with $m \le n$ a Sylow basis of (M, N: f, g), where each P_i has order a power of p_i . Then there is a Sylow basis $\{(S_i, T_i: f, g)\}_n$ of (A, B: f, g) such that for each $i=1, \dots, m$, $(M \cap S_i, N \cap T_i: f, g)$ is well defined and equal to $(P_i, Q_i: f, g)$.

Corollary. Let (A, B; f, g) be solvable and let $\{(S_i, T_i; f, g)\}_m$ with $m \leq n$ be a set of Sylow p_i -subgroups $(S_i, T_i; f, g)$ of (A, B; f, g), i=1, \cdots , m, such that for each $i, j=1, \cdots, m, S_iS_j=S_jS_i$ and $T_iT_j=T_jT_i$. Then there is a Sylow basis $\{(S_i, T_i; f, g)\}_n$ of (A, B; f, g) which contains $\{(S_i, T_i; f, g)\}_m$.

To prove those theorems, we prepare some lemmas. Let π denote a set of primes and (M, N: f, g) a subgroup of (A, B: f, g) such that Mis a π -subgroup (a Hall π -subgroup) of A. Then N is also a π -subgroup (a Hall π -subgroup) of B. In this case, we shall call (M, N: f, g) a π subgroup (a Hall π -subgroup) of (A, B: f, g). The following is well known.

Lemma 1. Let H be a Hall π -subgroup of a solvable group A and $M \triangleleft A$. Then $H \cap M$ and MH/M are Hall π -subgroups of M and A/M,

No. 10]

respectively.

Lemma 2. Let (A, B; f, g) be solvable and $\{(S_i, T_i; f, g)\}_n$ a Sylow basis of (A, B; f, g). Then, for any subset $\{i_1, \dots, i_r\}$ of $\{1, \dots, n\}$, $(S_{i_1} \cdots S_{i_r}, T_{i_1} \cdots T_{i_r}; f, g)$ is well defined.

Proof. By Lemma 1, $f(A) \cap T_{i_1} \cdots T_{i_r}$ and $f(S_{i_1} \cdots S_{i_r})$ are Hall $\{p_{i_1}, \dots, p_{i_r}\}$ -subgroups of f(A). Furthermore $f(S_{i_1} \cdots S_{i_r}) \subseteq f(A) \cap T_{i_1} \cdots T_{i_r}$. Hence $f(S_{i_1} \cdots S_{i_r}) = f(A) \cap T_{i_1} \cdots T_{i_r}$. Similarly $g(T_{i_1} \cdots T_{i_r}) = g(B) \cap S_{i_1} \cdots S_{i_r}$. Hence our result follows from [2, Lemma 1].

Lemma 3. Let (A, B; f, g) be solvable, let H be a Hall π -subgroup of A and K a subgroup of B. Then (H, K; f, g) is well defined iff Kis a Hall π -subgroup of $g^{-1}(H)$ and $f(H) \subseteq K$. In this case, (H, K; f, g)is a Hall π -subgroup of (A, B; f, g).

Proof. Let $M = g(B) \cap H$. Then M is a Hall π -subgroup of g(B). Let T be a Hall π -subgroup of B. Since g(T) is a Hall π -subgroup of g(B), there is $b \in B$ such that $g(b)^{-1}g(T)g(b)=M$. Thus $b^{-1}Tb \subseteq g^{-1}(M)$. Hence any Hall π -subgroup K of $g^{-1}(H)$ is a Hall π -subgroup of B. From this fact and Lemma 1, it follows that $f(H) = f(A) \cap K$ and $g(K) = g(B) \cap H$ if $f(H) \subseteq K$. Hence the "if" part holds. The "only if" part holds clearly.

Using Lemma 1 and Lemma 3, we obtain the following lemma and remark by the same way as in proofs of [2, Theorem 2] and [2, Theorem 3], respectively.

Lemma 4. Let (A, B; f, g) be solvable and (P, Q; f, g) a π -subgroup of (A, B; f, g). Then there is a Hall π -subgroup (H, K; f, g) of (A, B; f, g) such that (P, Q; f, g) is a subgroup of (H, K; f, g).

Remark. Let (A, B: f, g) be solvable, let (M, N: f, g) be a normal subgroup of (A, B: f, g) and (H, K: f, g) a Hall π -subgroup of (A, B: f, g). Then $(M \cap H, N \cap K: f, g)$, $(MH/M, NK/N: \overline{f}, \overline{g})$ and (MH, NK: f, g) are well defined where \overline{f} and \overline{g} are homomorphisms which are naturally induced by f and g, respectively.

Proof of Theorem 1. For each $i=1, \dots, n$, set $\pi_i = \{p_j | j \neq i\}$ and $H_i = \langle S_j | j \neq i \rangle$. Then each H_i is a Hall π_i -subgroup of A. By Lemma 3, there is a Hall π_i -subgroup K_i of B such that $(H_i, K_i; f, g)$ is well defined. Set $T_i = \bigcap_{j \neq i} K_j$. Then $\{T_i\}_n$ is a Sylow basis of B (cf. Proof of [1, Theorem 4.3.5]). Furthermore $S_i = \bigcap_{j \neq i} H_j$ and so

 $f(S_i) \subseteq \bigcap_{j \neq i} f(H_j) \subseteq \bigcap_{j \neq i} K_j = T_i \subseteq \bigcap_{j \neq i} g^{-1}(H_j) = g^{-1}(S_i).$

Hence, by Lemma 3, $(S_i, T_i: f, g)$ is well defined.

Proof of Theorem 2. Set $\Sigma_1 = \{1, \dots, m\}$ and $\Sigma_2 = \{m+1, \dots, n\}$. Furthermore set $H_i = \langle P_j | j \neq i, j \in \Sigma_1 \rangle$, $K_i = \langle Q_j | j \neq i, j \in \Sigma_1 \rangle$, $\pi_i = \{p_j | j \neq i, j \in \Sigma_1 \rangle$, $\pi_i = \{p_j | j \neq i, j \in \Sigma_1 \rangle$. Then, by Lemma 2, $(H_i, K_i: f, g)$ is well defined and a Hall π_i -subgroup of (M, N: f, g). By Lemma 4, there is a Hall Π_i -subgroup $(H_i^*, K_i^*: f, g)$ of (A, B: f, g) such that for $i \in \Sigma_1$, it contains $(H_i, K_i: f, g)$ and for $i \in \Sigma_2$, it contains (M, N: f, g). Set $S_i = \bigcap_{j \neq i} H_j^*$ and $T_i = \bigcap_{j \neq i} K_j^*$. Then, by the same way as in the proof of Theorem 1, we have that $(S_i, T_i: f, g)$ is well defined. Furthermore $\{S_i\}_n$ and $\{T_i\}_n$ are Sylow bases of A and B, respectively. Hence $\{(S_i, T_i: f, g)\}_n$ is a Sylow basis of (A, B: f, g). Since $S_i \cap M = P_i$ and $T_i \cap N = Q_i$ for $i \in \Sigma_1$, this completes our proof.

Proof of Corollary. Let $H=S_1\cdots S_m$ and $K=T_1\cdots T_m$. Then (H,K:f,g) is well defined and a subgroup of (A,B:f,g). Furthermore $\{(S_i,T_i:f,g)\}_m$ is a Sylow basis of (H,K:f,g). Now our assertion follows at once from Theorem 2.

References

- H. Bechtell: The Theory of Groups. Addison-Wesley, Inc., Reading, Mass. (1971).
- [2] Z. Goseki: On Sylow subgroups and an extension of groups. Proc. Japan Acad., 50, 576-579 (1974).
- [3] P. Hall: On the Sylow systems of a soluble group. Proc. London Math. Soc., 43, 316-323 (1937).