8. On Embedding Torsion Free Modules into Free Modules*

By Kanzo Masaike
Tokyo Gakugei University

(Communicated by Kenjiro Shoda, m. J. A., Jan. 12, 1977)

Let R be a ring with identity. A right R-module M is said to be torsion free, if M is isomorphic to a submodule of a direct product of copies of $E\left(R_{R}\right)$, the injective hull of R_{R}. In [4] the author studied the following problem. What is the condition of a maximal right quotient ring Q under which every finitely generated torsion free right R-module becomes torsionless? Specializing the above problem we shall investigate rings for which every finitely generated torsion free right module is embedded into free right modules. Such a ring will be called right T.F. ring in this paper. In section 1 we shall give a characterization of right T.F. rings in the case where Q is right self-injective.

If R is right $Q F-3$ i.e., R has a unique minimal faithful right module, then, Q is right $Q F-3$ (Tachikawa [7]), however, the converse does not hold in general. In section 2 it is proved that R is right and left $Q F-3$, if and only if so is Q and Q is torsionless as right and left R-modules.

1. Throughout this paper R is a ring with identity and Q denotes a maximal right quotient ring of R. Let $q \in Q$. Set $(q: R)=\{r \in R$; $r q \in R\}$.

Proposition 1.1. If Q is right self-injective, the following conditions are equivalent.
(i) Every finitely generated R-submodule of Q_{R} is embedded into a free right R-module.
(ii) Q_{R} is flat and $Q \otimes_{R} Q \cong Q$ canonically.

Proof. (ii) \Rightarrow (i). This is obtained by the method of [4, Theorem 2].
(i) \Rightarrow (ii). Since $q R+R$ is finitely generated R-module, it is isomorphic to a submodule of $\oplus_{i=1}^{n} R$, finite direct sum of copies of R_{R}. Hence there exists $\delta_{1}, \delta_{2}, \cdots, \delta_{n} \in \operatorname{Hom}\left(q R+R_{R}, R_{R}\right)$ such that $\bigcap_{i=1}^{n} \operatorname{Ker} \delta_{i}$ $=0$. Since δ_{i} is extended to $\bar{\delta}_{i} \in \operatorname{Hom}\left(Q_{Q}, Q_{Q}\right), i=1,2, \cdots, n$, we can take $a_{i} \in Q$ so that $\delta_{i}(x)=a_{i} x, x \in q R+R$. Now, R has an identity.

[^0]Therefore, $a_{i} \in(q: R)$. Put $M=\left\{a_{1}, \cdots, a_{n}\right\}$. Since $\bigcap_{i=1}^{n} \operatorname{Ker} \delta_{i}=0, M$ has no non-zero right annihilator in R and hence in Q. Put $A=\sum_{i=1}^{n} Q a_{i}$. Since Q_{Q} is injective, the finitely generated left ideal A of Q is an annihilator left ideal (cf. [2, p. 28 Theorem 8]). Then, A is a left annihilator of the right annihilator B of A. Since $B=0$, we have $A=Q$. Thus, $Q(q: R)=Q$. The consequence is immediate from Morita [5].

Let $a, b \in \oplus_{i=1}^{n} Q$ be arbitrary. If $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}\right.$, \cdots, b_{n}), we shall define $a \cdot b$ by $a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} \in Q$. Then, for $f \in \operatorname{Hom}\left(\bigoplus_{i=1}^{n} Q_{Q}, Q_{Q}\right)$ there exists $a \in \oplus_{i=1}^{n} Q$ such that $f(x)=a \cdot x, x \in \bigoplus_{i=1}^{n} Q$.

Theorem 1.2. If Q is right self-injective, the following conditions are equivalent.
(i) R is a right T.F. ring.
(ii) Q_{R} is flat, $Q \otimes_{R} Q \cong Q$ canonically and Q is a right T.F. ring.
(iii) Q_{R} is flat, $Q \otimes_{R} Q \cong Q$ canonically and every annihilator left ideal of $M_{n}(Q)$, the complete ring of $n \times n$ matrix over Q, is finitely generated for every $n>0$.

Proof. (i) \Leftrightarrow (ii). This is obtained by Proposition 1.1 and the proof of [4, Theorem 1].
(ii) \Rightarrow (iii). Let A be an annihilator left ideal of $M_{n}(Q)$. Set B $=\left\{\left(q_{1}, q_{2}, \cdots, q_{n}\right) \in \oplus_{i=1}^{n} Q ;\left(q_{1}, q_{2}, \cdots, q_{n}\right)\right.$ appears in a row of the matrix which belongs to $A\}$ and $C=\left\{c \in \bigoplus_{i=1}^{n} Q ; b \cdot c=0\right.$ for all $\left.b \in B\right\}$. Define $\bar{b}: \oplus_{i=1}^{n} Q_{Q} \rightarrow Q_{Q}$ by $\bar{b}(x)=b \cdot x, b \in B, x \in \oplus_{i=1}^{n} Q$. Then, $\left(\oplus_{i=1}^{n} Q\right) / C$ is embedded into $\Pi Q^{(b)}$, where $Q^{(b)}$ denotes copies of Q_{Q}. Since Q is right $T . F$., there exists $f_{i} \in \operatorname{Hom}\left(\underset{i=1}{\oplus} Q_{Q}, Q_{Q}\right), i=1,2, \cdots, t$, such that $\bigcap_{i=1}^{t} \operatorname{Ker} f_{i}=C$. Then, there exists $b_{1}, b_{2}, \cdots, b_{t} \in B$ such that $C=\{c$ $\in{\left.\underset{i=1}{n} Q ; b_{i} \cdot c=0 \text {, for all } i\right\} \text {. Hence the right annihilator of } A \operatorname{in} M_{n}(Q), ~(B)}^{n}$ is the right annihilator of $\left\{B_{1}, B_{2}, \cdots, B_{t}\right\}$ (where B_{i} is the element of $M_{n}(Q)$ such that the first row of the matrix B_{i} is b_{i} and the other rows are zero element of $\oplus_{i=1}^{n} Q$) and is also a right annihilator of $\sum_{i=1}^{t} M_{n}(Q) B_{i}$. Since $M_{n}(Q)$ is right self-injective, $\sum_{i=1}^{t} M_{n}(Q) B_{i}$ is an annihilator left ideal. It follows that $A=\sum_{i=1}^{t} M_{n}(Q) B_{i}$.
(iii) \Rightarrow (ii). Let $(\underset{i=1}{W} Q) / C$ be a finitely generated torsion free right Q-module, where C is a submodule of $\underset{i=1}{\oplus} Q$. Let $C^{*}=\left\{\beta \in M_{n}(Q)\right.$; every row of the transposed matrix ${ }^{t} \beta$ belongs to $\left.C\right\}$. Since $\left(\oplus_{i=1}^{n} Q\right) C$ is torsionless, C^{*} is an annihilator right ideal of $M_{n}(Q)$ and hence a right annihilator of a finite subset of $M_{n}(Q)$. Therefore, there exists $f_{i}: \oplus_{i=1}^{n} Q_{Q} \rightarrow Q_{Q}, \quad i=1,2, \cdots, h$, such that $\bigcap_{i=1}^{n} \operatorname{Ker} f_{i}=C$ and hence $(\overbrace{i=1}^{\oplus} Q) / C$ is contained in a free Q-module.

Remark. If R is right non-singular, Q and hence $M_{n}(Q)$ are regular self-injective. Then, every annihilator right ideal of $M_{n}(Q)$ is generated by an idempotent element and so is every annihilator left ideal. Therefore, the result of K.R. Goodearl [3, Theorem 7] is obtained from our Theorem 1. 2, too.
2. In [1] it is proved that R is right $Q F-3$ if and only if there exists non-isomorphic simple right ideals $S_{1}, S_{2}, \cdots, S_{n}$ such that $\underset{i=1}{\oplus} E\left(S_{i}\right)$ is a faithful projective right ideal of R.

Proposition 2.1. The following conditions are equivalent.
(i) R is right $Q F-3$.
(ii) Q is right $Q F-3, Q$ is torsionless as a right R-module and Soc $\left(Q_{Q}\right)$ is an essential extension of $\operatorname{Soc}\left(R_{R}\right)$ as a right R-module, where Soc $\left(R_{R}\right)$ is a right socle of R.

Proof. Assume R is right $Q F-3$. It is easily checked that $\left(\operatorname{Soc}\left(R_{R}\right)\right) Q \subset \operatorname{Soc}\left(Q_{Q}\right)$. Let K be a simple right ideal of Q. Let $e Q$ be the unique minimal faithful right Q-module such that $e=e_{1}+e_{2}+$ $\cdots+e_{n}$, where e_{i} 's are orthogonal primitive idempotent elements of Q and $e_{i} Q \cong e_{j} Q$ if and only if $i=j$. Since $e Q$ is faithful, K is isomorphic to a submodule of a suitable $e_{i} Q$. Then, $e_{i} Q=e_{i} R$ implies that K contains a simple right ideal of R and hence $\operatorname{Soc}\left(Q_{Q}\right)$ is an essential extension of $\operatorname{Soc}\left(R_{R}\right)$. Thus, (ii) holds immediately.

Conversely, assume (ii). Let $e Q=e_{1} Q \oplus e_{2} Q \oplus \cdots \oplus e_{n} Q$ be the same as previous. Since $\operatorname{Soc}\left(e_{i} Q_{Q}\right) \cap \operatorname{Soc}\left(R_{R}\right) \neq 0$, $\operatorname{Soc}\left(e_{i} Q_{R}\right)$ is a simple right ideal of R for all i. On the other hand, since $e_{i} Q$ is torsionless R-module, $e_{i} Q$ is isomorphic to a right ideal I_{i} of R which contains a simple right ideal. Now, $i \neq j$ implies I_{i} and I_{j} are nonisomorphic, then $\sum_{k=1}^{n} I_{k}=\bigoplus_{k=1}^{n} I_{k}$ in R and R is right $Q F-3$.

In the following right and left $Q F-3$ rings are called $Q F-3$.
Theorem 2.2. The following conditions are equivalent.
(i) R is $Q F-3$.
(ii) Q is $Q F-3$ and Q is torsionless as right and left R-modules
(iii) Q is a QF-3 maximal two-sided quotient ring of R and R has a minimal dense right ideal and a minimal dense left ideal.

Proof. From [4, Proposition 2] it is not hard to see that the above conditions (i) or (ii) implies Q is also a maximal left quotient ring. (i) \Rightarrow (iii) is obtained by E.A. Rutter Jr. [6, Corollary 1.2 and Theorem 1.4].
(iii) \Rightarrow (ii). Let J be a minimal dense left ideal of R. Since $\bigcap_{q \in Q}(q: R)$ is a dense left ideal, it contains J and $J Q \subset R$. Let $p \in Q$ be a non-zero element. There exists $j \in J$ such that $j p \neq 0$. Define $\bar{j} \in \operatorname{Hom}\left(Q_{R}, R_{R}\right)$ by left multiplication of j. Since $\bar{j}(p) \neq 0, Q_{R}$ is torsionless.
(ii) \Rightarrow (i). By Proposition 2.1 it is sufficient to prove that $\operatorname{Soc}\left(Q_{Q}\right)_{R}$ is an essential extension of $\operatorname{Soc}\left(R_{R}\right)$. Let K be a simple right ideal of Q. Since ${ }_{R} Q$ is torsionless, there exists $\delta \in \operatorname{Hom}\left({ }_{R} Q,{ }_{R} R\right)$ such that Ker $\delta \not \supset K$. Clearly δ is a right multiplication of an element of $\bigcap_{q \in Q}(R: q)$, where $(R: q)=\{r \in R ; q r \in R\}$. Set $M=K\left(\bigcap_{q \in Q}(R: q)\right)$. Then, the above observation implies $M \neq 0$. Let $N \neq 0$ be an R-submodule of M. Since K is a simple right ideal of $Q, N Q=K$. Hence $M=N Q\left(\bigcap_{q \in Q}(R: q)\right) \subset N$ and it follows that M is a simple right ideal of R and the consequence is immediate.

References

[1] R. R. Colby and E. A. Rutter Jr.: QF-3 rings with zero singular ideals. Pac. J. Math., 28, 303-308 (1968).
[2] C. Faith: Lectures on Injective Modules and Quotient Rings. Lecture Note in Math., 49, Springer-Verlag (1966).
[3] K. R. Goodearl: Embedding non-singular modules in free modules. J. Pure and Applied Algebra, 1, 275-279 (1971).
[4] K. Masaike: On quotient rings and torsionless modules. Sci. Rep. Tokyo Kyoiku Daigaku Sec. A, 11, No. 280, 26-30 (1971).
[5] K. Morita: Flat modules, injective modules and quotient rings. Math. Z., 120, 25-40 (1971).
[6] E. A. Rutter Jr.: Dominant modules and finite localizations. Tôhoku Math. J., 27, 225-239 (1975).
[7] H. Tachikawa: Quasi-Fronbenius Rings and Generalizations. Lecture Note in Math., 351, Springer-Verlag (1973).

[^0]: *) Dedicated to Prof. Kiiti Morita on his sixtieth birthday.

