8. On Embedding Torsion Free Modules into Free Modules^{*)}

By Kanzo MASAIKE Tokyo Gakugei University

(Communicated by Kenjiro SHODA, M.J.A., Jan. 12, 1977)

Let R be a ring with identity. A right R-module M is said to be torsion free, if M is isomorphic to a submodule of a direct product of copies of $E(R_R)$, the injective hull of R_R . In [4] the author studied the following problem. What is the condition of a maximal right quotient ring Q under which every finitely generated torsion free right R-module becomes torsionless? Specializing the above problem we shall investigate rings for which every finitely generated torsion free right module is embedded into free right modules. Such a ring will be called *right* T.F. ring in this paper. In section 1 we shall give a characterization of right T.F. rings in the case where Q is right self-injective.

If R is right QF-3 i.e., R has a unique minimal faithful right module, then, Q is right QF-3 (Tachikawa [7]), however, the converse does not hold in general. In section 2 it is proved that R is right and left QF-3, if and only if so is Q and Q is torsionless as right and left R-modules.

1. Throughout this paper R is a ring with identity and Q denotes a maximal right quotient ring of R. Let $q \in Q$. Set $(q:R) = \{r \in R; rq \in R\}$.

Proposition 1.1. If Q is right self-injective, the following conditions are equivalent.

(i) Every finitely generated R-submodule of Q_R is embedded into a free right R-module.

(ii) Q_R is flat and $Q \otimes_R Q \cong Q$ canonically.

Proof. (ii) \Rightarrow (i). This is obtained by the method of [4, Theorem 2].

(i) \Rightarrow (ii). Since qR + R is finitely generated *R*-module, it is isomorphic to a submodule of $\bigoplus_{i=1}^{n} R$, finite direct sum of copies of R_{R} . Hence there exists $\delta_{1}, \delta_{2}, \dots, \delta_{n} \in \text{Hom}(qR + R_{R}, R_{R})$ such that $\bigcap_{i=1}^{n} \text{Ker } \delta_{i}$ =0. Since δ_{i} is extended to $\overline{\delta}_{i} \in \text{Hom}(Q_{Q}, Q_{Q}), i=1, 2, \dots, n$, we can take $a_{i} \in Q$ so that $\delta_{i}(x) = a_{i}x, x \in qR + R$. Now, *R* has an identity.

^{*)} Dedicated to Prof. Kiiti Morita on his sixtieth birthday.

K. MASAIKE

Therefore, $a_i \in (q:R)$. Put $M = \{a_1, \dots, a_n\}$. Since $\bigcap_{i=1}^n \text{Ker } \delta_i = 0, M$ has no non-zero right annihilator in R and hence in Q. Put $A = \sum_{i=1}^n Qa_i$. Since Q_Q is injective, the finitely generated left ideal A of Q is an annihilator left ideal (cf. [2, p. 28 Theorem 8]). Then, A is a left annihilator of the right annihilator B of A. Since B=0, we have A=Q. Thus, Q(q:R)=Q. The consequence is immediate from Morita [5].

Let $a, b \in \bigoplus_{i=1}^{n} Q$ be arbitrary. If $a = (a_1, a_2, \dots, a_n)$ and $b = (b_1, b_2, \dots, b_n)$, we shall define $a \cdot b$ by $a_1b_1 + a_2b_2 + \dots + a_nb_n \in Q$. Then, for $f \in \operatorname{Hom}\left(\bigoplus_{i=1}^{n} Q_Q, Q_Q\right)$ there exists $a \in \bigoplus_{i=1}^{n} Q$ such that $f(x) = a \cdot x, x \in \bigoplus_{i=1}^{n} Q$.

Theorem 1.2. If Q is right self-injective, the following conditions are equivalent.

(i) R is a right T.F. ring.

(ii) Q_R is flat, $Q \otimes_R Q \cong Q$ canonically and Q is a right T.F. ring.

(iii) Q_R is flat, $Q \otimes_R Q \cong Q$ canonically and every annihilator left ideal of $M_n(Q)$, the complete ring of $n \times n$ matrix over Q, is finitely generated for every n > 0.

Proof. (i) \Leftrightarrow (ii). This is obtained by Proposition 1.1 and the proof of [4, Theorem 1].

(ii) \Rightarrow (iii). Let A be an annihilator left ideal of $M_n(Q)$. Set $B = \{(q_1, q_2, \dots, q_n) \in \bigoplus_{i=1}^n Q; (q_1, q_2, \dots, q_n) \text{ appears in a row of the matrix which belongs to <math>A\}$ and $C = \{c \in \bigoplus_{i=1}^n Q; b \cdot c = 0 \text{ for all } b \in B\}$. Define $b : \bigoplus_{i=1}^n Q_Q \rightarrow Q_Q$ by $b(x) = b \cdot x, \ b \in B, \ x \in \bigoplus_{i=1}^n Q$. Then, $(\bigoplus_{i=1}^n Q)/C$ is embedded into $\prod Q^{(b)}$, where $Q^{(b)}$ denotes copies of Q_Q . Since Q is right T. F., there exists $f_i \in \text{Hom} (\bigoplus_{i=1}^n Q_Q, Q_Q), \ i=1, 2, \dots, t$, such that $\bigcap_{i=1}^i Q; \ b_i \cdot c = 0$, for all $i\}$. Hence the right annihilator of A in $M_n(Q)$ is the right annihilator of $\{B_1, B_2, \dots, B_i\}$ (where B_i is the element of $M_n(Q)$ such that the first row of the matrix B_i is b_i and the other rows are zero element of $\bigoplus_{i=1}^n Q$) and is also a right annihilator of $\sum_{i=1}^t M_n(Q)B_i$. Since $M_n(Q)$ is right self-injective, $\sum_{i=1}^t M_n(Q)B_i$.

No. 1] Embedding Torsion Free Modules into Free Modules

(iii) \Rightarrow (ii). Let $\left(\bigoplus_{i=1}^{W} Q \right) / C$ be a finitely generated torsion free right *Q*-module, where *C* is a submodule of $\bigoplus_{i=1}^{n} Q$. Let $C^* = \{\beta \in M_n(Q) ; \text{ every}$ row of the transposed matrix ${}^{t}\beta$ belongs to *C*}. Since $\left(\bigoplus_{i=1}^{n} Q \right) C$ is torsionless, C^* is an annihilator right ideal of $M_n(Q)$ and hence a right annihilator of a finite subset of $M_n(Q)$. Therefore, there exists $f_i: \bigoplus_{i=1}^{n} Q_Q \rightarrow Q_Q, \quad i=1, 2, \dots, h$, such that $\bigcap_{i=1}^{n} \text{Ker } f_i = C$ and hence $\left(\bigoplus_{i=1}^{n} Q \right) / C$ is contained in a free *Q*-module.

Remark. If R is right non-singular, Q and hence $M_n(Q)$ are regular self-injective. Then, every annihilator right ideal of $M_n(Q)$ is generated by an idempotent element and so is every annihilator left ideal. Therefore, the result of K.R. Goodearl [3, Theorem 7] is obtained from our Theorem 1. 2, too.

2. In [1] it is proved that R is right QF-3 if and only if there exists non-isomorphic simple right ideals S_1, S_2, \dots, S_n such that $\bigoplus_{i=1}^n E(S_i)$ is a faithful projective right ideal of R.

Proposition 2.1. The following conditions are equivalent.

(i) R is right QF-3.

(ii) Q is right QF-3, Q is torsionless as a right R-module and $Soc(Q_Q)$ is an essential extension of $Soc(R_R)$ as a right R-module, where $Soc(R_R)$ is a right socle of R.

Proof. Assume R is right QF-3. It is easily checked that $(Soc(R_R))Q \subset Soc(Q_Q)$. Let K be a simple right ideal of Q. Let eQ be the unique minimal faithful right Q-module such that $e=e_1+e_2+\cdots+e_n$, where e_i 's are orthogonal primitive idempotent elements of Q and $e_iQ \cong e_jQ$ if and only if i=j. Since eQ is faithful, K is isomorphic to a submodule of a suitable e_iQ . Then, $e_iQ=e_iR$ implies that K contains a simple right ideal of R and hence $Soc(Q_Q)$ is an essential extension of Soc (R_R) . Thus, (ii) holds immediately.

Conversely, assume (ii). Let $eQ = e_1Q \oplus e_2Q \oplus \cdots \oplus e_nQ$ be the same as previous. Since $Soc(e_iQ_q) \cap Soc(R_R) \neq 0$, $Soc(e_iQ_R)$ is a simple right ideal of R for all i. On the other hand, since e_iQ is torsionless R-module, e_iQ is isomorphic to a right ideal I_i of R which contains a simple right ideal. Now, $i \neq j$ implies I_i and I_j are non-isomorphic then $\sum_{i=1}^{n} I_i$ in R and R is right OF 2

isomorphic, then $\sum_{k=1}^{n} I_k = \bigoplus_{k=1}^{n} I_k$ in R and R is right QF-3.

In the following right and left QF-3 rings are called QF-3. Theorem 2.2. The following conditions are equivalent. (i) R is QF-3. (ii) Q is QF-3 and Q is torsionless as right and left R-modules

(iii) Q is a QF-3 maximal two-sided quotient ring of R and R has a minimal dense right ideal and a minimal dense left ideal.

Proof. From [4, Proposition 2] it is not hard to see that the above conditions (i) or (ii) implies Q is also a maximal left quotient ring. (i) \Rightarrow (iii) is obtained by E.A. Rutter Jr. [6, Corollary 1.2 and Theorem 1.4].

(iii) \Rightarrow (ii). Let J be a minimal dense left ideal of R. Since $\bigcap_{q \in Q} (q:R)$ is a dense left ideal, it contains J and $JQ \subset R$. Let $p \in Q$ be a non-zero element. There exists $j \in J$ such that $jp \neq 0$. Define $j \in \text{Hom}(Q_R, R_R)$ by left multiplication of j. Since $j(p) \neq 0$, Q_R is torsionless.

(ii) \Rightarrow (i). By Proposition 2.1 it is sufficient to prove that $Soc (Q_Q)_R$ is an essential extension of $Soc (R_R)$. Let K be a simple right ideal of Q. Since $_RQ$ is torsionless, there exists $\delta \in \text{Hom} (_RQ, _RR)$ such that Ker $\delta \not\supset K$. Clearly δ is a right multiplication of an element of $\bigcap_{R \in Q} (R:q)$,

where $(R:q) = \{r \in R; qr \in R\}$. Set $M = K\left(\bigcap_{q \in Q} (R:q)\right)$. Then, the above observation implies $M \neq 0$. Let $N \neq 0$ be an *R*-submodule of *M*. Since *K* is a simple right ideal of *Q*, NQ = K. Hence $M = NQ\left(\bigcap_{q \in Q} (R:q)\right) \subset N$ and it follows that *M* is a simple right ideal of *R* and the consequence is immediate.

References

- R. R. Colby and E. A. Rutter Jr.: QF-3 rings with zero singular ideals. Pac. J. Math., 28, 303-308 (1968).
- [2] C. Faith: Lectures on Injective Modules and Quotient Rings. Lecture Note in Math., 49, Springer-Verlag (1966).
- [3] K. R. Goodearl: Embedding non-singular modules in free modules. J. Pure and Applied Algebra, 1, 275-279 (1971).
- [4] K. Masaike: On quotient rings and torsionless modules. Sci. Rep. Tokyo Kyoiku Daigaku Sec. A, 11, No. 280, 26-30 (1971).
- [5] K. Morita: Flat modules, injective modules and quotient rings. Math. Z., 120, 25-40 (1971).
- [6] E. A. Rutter Jr.: Dominant modules and finite localizations. Tôhoku Math. J., 27, 225-239 (1975).
- [7] H. Tachikawa: Quasi-Fronbenius Rings and Generalizations. Lecture Note in Math., 351, Springer-Verlag (1973).