7. Quadruply.Transitive Permutation Groups Whose Four-Point Stabilizer is a Frobenius Group

By Mitsuo Yoshizawa
Department of Mathematics, Gakushuin University, Tokyo
(Communicated by Kenjiro Shoda, m. J. A., Dec. 13, 1976)

1. Introduction. In this paper we shall prove the following result.

Theorem. Let G be a 4 -fold transitive group on $\Omega=\{1,2, \cdots, n\}$. If the stabilizer of four points in G is a Frobenius group, then G is one of the following groups: S_{7}, A_{8} or M_{23}.

We shall use the same notations as in [1].
2. Proof of the theorem. Let K be the Frobenius kernel of G_{1234} and H a Frobenius complement of G_{1234}.

By a theorem of M. Hall, the order of G_{1234} is even.
Let P be a Sylow 2-subgroup of G_{1234}. Then $P \neq 1$. If P is isomorphic to a subgroup of H, then G is S_{7} by Theorem 1 in [2]. Hence we may assume that P is contained in K. Thus P is a normal subgroup of G_{1234}.

By [1; IV] and Lemma 1 in [1; II], $\left|I\left(G_{1234}\right)\right|=4$ and $|I(P)|=4,5,6,7$ or 11. If $|I(P)| \geqq 6$, then G is M_{23} by [1; VIII, IX, XI]. If $|I(P)|=5$, then $\left|I\left(G_{1234}\right)\right|=5$, which is a contradiction. Hereafter we assume $|I(P)|$ $=4$, and so, that n is an even integer.

If P is semiregular on $\Omega-I(P)$ or P is abelian, then G is A_{8} by [1; VII, X]. From now on, we shall examine the case where P is neither semiregular on $\Omega-I(P)$ nor abelian, and prove eventually that this case does not arise.

Let R be a Sylow 3 -subgroup of G_{1234}. By [1; XIII] and [3], R is a nonidentity group and $[R, P] \neq 1$. If R is contained in K, then $[R, P]$ $=1$, which is a contradiction. Hence R must be contained in a conjugate of H.

Let r be an element of order three of R. Then r is an element of order three acting fixed point free on $P-\{1\}$. Hence by [4], the nilpotency class of P is two.

By Theorem A in [5], G_{123} has either (1) an abelian normal subgroup $\neq 1$, or (2) a unique minimal normal subgroup, and this minimal normal subgroup is simple. In the case (1), G must be S_{7} or M_{23} by [6], in contradiction to our present assumption $|I(P)|=4$. We shall now consider the case (2). Let N be the minimal normal subgroup of G_{123}. It is easily seen that G_{123} is contained in $\operatorname{Aut}(N)$.

Let S be a Sylow 2-subgroup of N. Since n is even, we may assume that S is contained in P. Hence the nilpotency class of S is one or two.

By [7] and [8], N is one of the following groups : $\operatorname{PSL}\left(2,2^{m}\right)(m>1)$, $\operatorname{PSL}(2, q)(q \equiv 3$ or $5(\bmod 8), q>3)$, Ja, Ree group, $\operatorname{PSL}(2, q)(q \equiv 7$ or $9(\bmod 16)), A_{7}, S z\left(2^{2 m+1}\right)(m \geqq 1), U_{3}\left(2^{m}\right)\left(=P S U\left(3,2^{m}\right)\right)(m \geqq 2), L_{3}\left(2^{m}\right)$ $\left(=P S L\left(3,2^{m}\right)\right)(m \geqq 2)$ or $\operatorname{Sp}\left(4,2^{m}\right)(m \geqq 2)$.

Suppose N is Ja, Ree group, A_{7} or $P S L(2, q)(q \equiv 7$ or $9(\bmod 16))$. Then S is of order 8. As r normalizes P and N, r normalizes S, and r acts fixed point free on $S-\{1\}$. Hence $3 \mid 7$, which is a contradiction.

Suppose N is $\operatorname{PSL}\left(2,2^{m}\right)(m>1)$. Then we may assume that

$$
S=\left\{\left.\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right) \right\rvert\, x \in G F\left(2^{m}\right)\right\} .
$$

Since $3 \mid 2^{m}-1,3 \nmid 2^{m+1}-1$. Thus there must be an element of order 4 in G_{123} which is a field automorphism of $G F\left(2^{m}\right)$. Let a be that element. Then

$$
Z(\langle a\rangle \ltimes S)=\left\{\left.\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right) \right\rvert\, x \in G F\left(2^{m / 4}\right)\right\} .
$$

Hence the nilpotency class of $\langle a\rangle \ltimes S$ is greater than two, which is a contradiction.

Suppose N is $\operatorname{PSL}(2, q)(q \equiv 3$ or $5(\bmod 8), q>3)$. Then G_{123} is contained in $P \Gamma L(2, q)$. Hence P is a dihedral group or a semidihedral group. On the other hand the order of P is not less than 16. Hence $P / Z(P)$ is a non-abelian group, which is a contradiction.

Suppose N is $S z\left(2^{2 m+1}\right)(m \geqq 1), U_{3}\left(2^{m}\right)(m \geqq 2)$ or $L_{3}\left(2^{m}\right)(m \geqq 2)$. Then it is easily seen that $P=S$. Since $|I(P)|=4$ and $N \leqq G_{123}, N_{N}(S)$ $=N_{N}(P) \leqq G_{1234}$. Let i be an involution of $Z(S)$. As $S z\left(2^{2 m+1}\right), U_{3}\left(2^{m}\right)$ and $L_{3}\left(2^{m}\right)$ are C-groups, we have $C_{N}(i) \leqq N_{N}(S)$. Since $C_{N}(i)$ is contained in $G_{1234}, C_{N}(i)$ is a nilpotent group. Hence N must be $S z\left(2^{2 m+1}\right)$. On the other hand $\operatorname{Syl}_{2}\left(G_{123}\right)=\operatorname{Syl}_{2}(N)$ and P is not semiregular on $\Omega-I(P)$. Hence the Sylow 2-subgroups are not disjoint, which is a contradiction.

Suppose N is $S p(4, q)\left(q=2^{m}, m \geqq 2\right)$. Then it is easily seen that $P=S$. We may assume that $N=\left\{y \in G L(4, q) \mid y^{t} \cdot j \cdot y=j\right\}$. In this case

$$
j=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

We may assume that

$$
S=\left\{\left.\left(\begin{array}{cccc}
1 & d & e & f \\
0 & 1 & g & e+d g \\
0 & 0 & 1 & d \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, d, e, f, g \in G F(q)\right\}
$$

Since $P=S$, we have $N_{N}(S) \leqq G_{1234}$. Let c be a generator of the cyclic group $G F(q)^{*}$. Let

$$
u=\left(\begin{array}{cccc}
c & 0 & 0 & 0 \\
0 & c^{-1} & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & c^{-1}
\end{array}\right), \quad v=\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and

$$
w=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Then u normalizes S and u is an odd order element of $G_{1234} . v$ and w are involutions of P, and $v u=u v$ but $w u \neq u w$. This is a contradiction.

Acknowledgement. I should like to thank Dr. Eiichi Bannai for his help and advice for this paper.

References

[1] H. Nagao and T. Oyama: On multiply transitive groups. II, IV, VII, VIII, IX, X, XI, and XIII. Osaka J. Math., 2, 129-136 (1965), 2, 327-341 (1965), 5, 155-164 (1968), 6, 315-319 (1969), 7, 41-56 (1970), 8, 99-130 (1971), 10, 379-439 (1973), and 13, 367-383 (1976).
[2] M. Aschbacher: 2-transitive groups whose 2-point stabilizer has 2-rank 1. J. Algebra, 36, 98-127 (1975).
[3] Y. Hiramine: 4-fold transitive groups in which any 2-element and any 3-element of a stabilizer of four points are commutative (to appear).
[4] W. Burnside: On groups which admit certain isomorphisms. Messenger Math., 33, 124-126 (1903).
[5] M. E. O'Nan: Normal structure of the one point stabilizer of a doubly transitive permutation groups. II. Trans. Amer. Math. Soc., 215, 43-74 (1975).
[6] -: Triply transitive permutation groups whose two point stabilizer is local. J. Algebra, 29, 368-386 (1974).
[7] J. H. Walter: Finite groups with abelian Sylow 2-subgroups. Ann. of Math., 89, 405-514 (1969).
[8] R. Gilman and D. Gorenstein: Finite groups with Sylow 2-subgroups of class two. I, II. Trans. Amer. Math. Soc., 207, 1-101, 103-126 (1975).

