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1. Introduction. In this paper we shall prove the following
result.

Theorem. Let G be a 4-fold transitive group on tg--{1, 2, ..., n}.
If the stabilizer of four points in G is a Frobenius group, then G is one
of the following groups" S, As or M..

We shall use the same notations as in [1].
2. Proof of the theorem. Let K be the Frobenius kernel of

G and H a Frobenius complement of G.
By a theorem of M. Hall, the order of G,. is even.
Let P be a Sylow 2-subgroup of G. Then P:/=I. If P is iso-

morphic to a subgroup of H, then G is Sz by Theorem 1 in [2]. Hence
we may assume that P is contained in K. Thus P is a normal subgroup
of G134.

By [1; IV] and Lemma 1 in [1; II], II(G)]-4 and II(P)I=4, 5, 6, 7
or 11. If II(P)I>=6, then G is M. by [1; VIII, IX, XI]. If II(P)I--5,
then II(G)I=5, which is a contradiction. Hereafter we assume
----4, and so, that n is an even integer.

If P is semiregular on 2--I(P) or P is abelian, then G is As by
[1; VII, X]. From now on, we shall examine the case where P is
neither semiregular on 9--I(P) nor abelian, and prove eventually that
this case does not arise.

Let R be a Sylow 3-subgroup of G. By [1; XIII] and [3], R is
a nonidentity group and [R, P] :/: 1. If R is contained in K, then [R, P]
----1, which is a contradiction. Hence R must be contained in a conju-
gate of H.

Let r be an element of order three of R. Then r is an element of
order three acting fixed point free on P-{1}. Hence by [4], the nil-
potency class of P is two.

By Theorem A in [5], Gx has either (1) an abelian normal subgroup
:/: 1, or (2) a unique minimal normal subgroup, and this minimal normal
subgroup is simple. In the case (1), G must be S or M. by [6], in con-
tradiction to our present assumption II(P)I=4. We shall now consider
the case (2). Let N be the minimal normal subgroup of G. It is
easily seen that G,. is contained in Aut(N).
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Let S be a Sylow 2-subgroup of N. Since n is even, we may
assume that S is contained in P. Hence the nilpotency class of S is
one or two.

By [7] and [8], N is one of the following groups" PSL(2, 2) (m 1),
PSL(2, q) (q--3 or 5 (mod 8), q3), Ja, Ree ,group, PSL(2, q) (q=7 or
9 (mod 16)), A, Sz(22/) (m__>l), U(2) (--PSU(3,2)) (m__>2), L(2)
(=PSL(3, 2)) (m__> 2) or Sp(4, 2) (m_>_ 2).

Suppose N is Ja, Ree group, A7 or PSL(2, q) (q7 or 9 (mod 16)).
Then S is of order 8. As r normalizes P and N, r normalizes S, and r
acts fixed point free on S--{1}. Hence 3[7, which is a contradiction.

Suppose N is PSL(2, 2) (m1). Then we may assume that

Since 312-1, 3X2/--1. Thus there must be an element of order 4
in G,. which is a field automorphism of GF(2). Let a be that element.
Then

Hence the nilpotency class of (a}S is greater than two, which is a
contradiction.

Suppose N is PSL(2, q)(q3 or 5 (mod 8), q>3). Then G is
contained in PFL(2, q). Hence P is a dihedral group or a semidihedral
group. On the other hand the order of P is not less than 16. Hence
P/Z(P) is a non-abelian group, which is a contradiction.

Suppose N is Sz(2TM+) (m 1), U(2) (m2) or L(2) (m2).
Then it is easily seen that P=S. Since ]I(P)]=4 and NG, N(S)
=N(P)G,. Let i be an involution of Z(S). As Sz(2m+), U(2)
and L(2) are C-groups, we have Ca(i)N(S). Since C(i) is con-
tained in G,, C(i) is a nilpotent group. Hence N must be Sz(2+).
On the other hand Syl (G)=Syl (N) and P is not semiregular on
9-I(P). Hence the Sylow 2-subgroups are not disjoint, which is a
contradiction.

Suppose N is Sp(4, q) (q=2, m2). Then it is easily seen that
P S. We may assume that N {y e GL(4, q) yt. ]. y=]}. In this case

]= 0 1
1 0

1 0 0 0
We may assume that
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S= 1 g e+dg

0 0 0

d, e, f, g e GF(q)I.
Since P-S, we have Nv(S) <=G.
group GF(q)*. Let

c- 0 0
U--

0 c 0
0 0 0 c-

Let c be generator of the cyclic

v=
0 1

0 0 0 1

W---
1 1
0 1

0 0 0 1
Then u normalizes S and u is an odd order element of G4. v and w
are involutions of P, and vu-uv but wu==/=:uw. This is a contradiction.
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