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1o Introduction. E. Rengel [3] derived many results on univalent
functions in the multiply connected, representative domains (defined
hereafter) by means of the so-called Rengel’s inequality. In this paper
we shall deal with multivalent functions in multiply connected domains
by means of the fundamental inequalities based on the extremal length
method which are extensions of Rengel’s inequality (cf. [2] or [4]).

We shall first define the n-ply connected, representative domains
as follows.

D" an annulus, (0)r[zlr2 (c) with (n--2) circular arc
slits centered at the origin.

D2" an annulus, (0) r]zlr2 ( oo) with (n--2) radial slits
emanating from the origin.

D" the unit circle with (n--l) circular arc slits centered at the
origin.

D" the unit circle with (n--l) radial slits emanating from the
origin.

DV the whole plane with n circular arc slits centered at the origin.

D" the whole plane with n radial slits emanating from the origin.

We shall define circumferentially mean p-valent functions in a
domain D, according to Biernacki (cf. Hayman [1]).

Let n(R, ) denote the number of roots of the equation f(z)--w
-----Re. We define p(R) as follows.

l:n(R,)d (0<R oo)(1.1) p(R)=--
If p(R)<_p (O<_R oo), f(z) is called "circumferentially mean p-valent".
In this paper we assume that p is a positive integer.

2. Fundamental inequalities. Theorem 2.1. Let f(z) be single-
valued, regular, circumferentially mean p-valent in D1 and satisfy the

condition [ [d arg f(z)[>_2zp(C" [z[=r (r<r<r2)) where the circle C
J

does not contain any circular slit of D. Then we have the following
inequality
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(2.1) R.>_(r-) (R
R-_- e,in If(z)I, R= supe f(z)

Equality holds only when f(z)=cz (c" an arbitrary constant).
Proof. We shall introduce aweight function p(z) If’(z)I/(2 If(z)).

Then

(2.2) p(z)rd= 1 ,dlogf(z) l> 1 dargf(z)l>p (=argz).

Therefore, on every circle C we have pdp p/r. Hence, considering

I.I(p-p/2r)rdrdO, we hve

(2.3) prdrd>-- log
2u r

Here (2) [[ prdrd means the logarithmic area of the image domain
JJD

D o D. Then (2) prdrd= ((R,)/R)gRd(w=f()

Ne). On he oher hand
n( ) dRd= n(R )dg2up log R(2.4)

z, R R"
Theorem 2.2. Let f(z) be single-valued, regular, circumferen-

tially mean p-valent in D. Let M={} denote the family of the seg-
ments, r]z]r, arg z= (02) which do not contain any radial
slit of D. Then we have the following inequality,

R log r >A,(2.5)

here inf lf’()l/]f()l grA, R= inf lf(), R su f()l. Nql-

itg holg ohe f(z)=e (e" rbitr
Proof. Similarly as in heorem 2.1, we shall do

1 e)
[ pdr2A/2, weSince have

prdrdgA/(2 log (r/r)).(2.7)
D

Hence, we can derive (2.5) by means of (2.4).. Applications of fundamental inequalities. Theorem .1. Let
f(z) be single-valued, circumferentially mean p-valent, and f(z)](1 in

[ darg f(z)=0 (,=1, 2, ..., n--l) along every curveD. Moreover let
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in D which is sulciently near to each arc slit S and encloses it
simply, and f(z) be expanded in a neighborhood of the origin as
follows"

f(z)=a,z +a+z++....
Then
(3.1) la, l_<l.
Equality holds only when f(z)=cz (Icl=l).

Proof. f(z) has a zero point of order p at the origin and f(z) is
circumferentially mean p-valent in D. Hence f(z) has no zero point

except at z=0. Therefore we have [ d argf(z)-- d arg f(z)
J

=2up or every circle zl=r (0rl) (k=1,2, ...,n--l) where each

satisfies the condition in Theorem 3.1. Hence d arg f(z)=2p.
J

Let ()denote the nearest distance from the origin to the image
o a small circle ]zJ= by w=f(z). Then we have lim 3()/=a.

On the other hand, applying Theorem 2.1 or the image o the
domain obtained by omitting a circle z]g rom D, we have 1/

1/3(e). Hence we have algl.
Theorem .2. Let f(z) be single-valued, regular, circumferen-

tially mean p-valent and ]f(z)J<l in D,. Moreover let in a neigh-
borhood of the origin, f(z)=az+a+z++ .. Then

(3.2) [a, J2m (m=min
Equality holds only when f(z)=cz (lcJ=l).

Proof. Let D denote the domain obtained by omitting a closed
small circle Izlg rom D. Let denote a radial segment, elzll,
arg z=p (02) which does not contain any radial slit of D. Let
() or *(D denote respectively the longest and nearest distance rom
the origin to the image o a circle Iz]= by w=f(z). Then lim 3(e)/

=lim 6*(D/=lal. On the other hand
0

m(3.3) inf L>log
(D

Applying Theorem 2.2 or D, we have (log m/6(D)gp log(1/6*(D)
log (1/D, that is, (logm/(D-p log )g -p(log /6*(D-p log ) log.

Hence we can derive (3.2).
We can prove the following 1emma, by means of argument princi-

ple.
Lemma .1. Let f(z) be single-valued, regular except or the

pole at , circumferentially mean p-valent in D and expanded in a
neighborhood of the origin, f(z)=z+a+z++.... Moreover let
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d f(z)=0 (,=1, 2, n) for simple closed curve whicharg every

is sufficiently near to each circular slit S and encloses S. Then f(z)
has only a pole of order p at z=

We can easily prove the following by means of Lemma 3.1 and
Theorem 2.1, considering the method of cutting a neighborhood of z

Theorem 3.B. Let f(z) satisfy the same condition as mentioned
in Lemma 3.1. Then

(3.4) lim f(z) I>1.Zp

Equality holds only when f(z)= zp.
We can also prove the ollowing by Theorem 2.2 similarly.
Theorem 3.4. Let f(z) be single-valued, regular, except at z= c,

circumferentially mean p-valent in D, and f(z)=z , bnz-n (b0=l) in

a neighborhood of z=c. Moreover let f(z)=az+a+lz+l+..., in
a neighborhood of the origin. Then
(3.5) la,ll.
Equality holds only when f(z)= z.
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