148. On Some Properties of Meromorphic Functions.

By Tatsujiro Shimizu.

Mathematical Institute, Imperial University, Tokyo.
(Rec. Nov. 10, 1926. Comm. by T. Takagi, m.I.A., Nov. 12, 1926.)
Consider a class C of meromorphic functions

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} b_{n} z^{n} / \sum_{n=0}^{\infty} c_{n} z^{n} \tag{1}
\end{equation*}
$$

where $\sum_{n=0}^{\infty} b_{n} z^{n}$ and $\sum_{n=0}^{\infty} c_{n} z^{n}$ are integral functions with the following properties:

1) $\left|b_{0}\right|>\varepsilon>0,\left|c_{0}\right|>\varepsilon^{\prime}>0$, and $\left|b_{0}-c_{0}\right|>\varepsilon^{\prime \prime}>0$,
2) $\left|b_{n}\right|<L_{n}$ and $\left|c_{n}\right|<L_{n}^{\prime}$ for $n=0,1,2$,
where L_{n} and L_{n}^{\prime} are positive numbers such that $\sum_{n=0}^{\infty} L_{n} z^{n}$ and $\sum_{n=0}^{\infty} L_{n}^{\prime} z^{n}$ are also integral functions,
3) of the two sets of inequalities

$$
\begin{align*}
& \text { i) } 0<l_{n}<\left|b_{n}\right| \text { for } n=n_{1}, n_{2}, \cdots \cdots \cdots \cdot \tag{4}\\
& \text { ii) } \left.0<l_{n^{\prime}}^{\prime}<\left|c_{n^{\prime}}\right| \text { for } n^{\prime}=n_{1}^{\prime}, n_{2}^{\prime}, \cdots \cdots .\right\}
\end{align*}
$$

where l_{n} and $l^{\prime}{ }^{\prime}{ }^{\prime}$ are any positive constants for a given sequence of suffixes $n=n_{1}, n_{2}, \cdots \cdots \cdots$ and $n^{\prime}=n_{1}^{\prime}, n_{2}^{\prime} \cdots \cdots \cdots$ respectively, at least one is satisfied.

Then we have the following
Theorem: There exists an infinite number of concentric ring-regions $|z|<R_{1}$ and $R_{i}<|z|<R_{i+1}(i=1,2, \cdots \cdots \cdot), R_{i}$ depending only on the class C, in which all the functions (1) take at least p times the value 1, or q times zero, or have r poles.

Proof. ${ }^{(1)}$ From (2) and (3) it follows that

$$
\begin{equation*}
\left|f^{(n)}(0)\right|<L^{\prime \prime}{ }_{n} \text { for } n=0,1,2, \ldots \ldots \tag{5}
\end{equation*}
$$

where $L^{\prime \prime}{ }_{n}$ are finite quantities depending on L_{n}, L_{n}^{\prime} and ε^{\prime}. First, there

[^0]exists a circle $|z|<R_{1}$ in which all the functions (1) assume at least p times the value 1 , or q times 0 , or have r poles. For, if not, the functions (1) must form by Montel's theorem ${ }^{(1)}$ a quasi-normal family, so that there must exist a limiting function $\varphi(z)$, to which a sequence of functions suitably chosen from (1) coverges uniformly in a circle $|z|<R$ except at a finite number of points. $\quad R$ being arbitrary, $\varphi(z)$ is meromorphic in the whole z-plane, and neither reduces to a rational function nor to the constant ∞ by (4) and (5), But this contradicts Picard's theorem.

We now show the existence of a number R_{2}, such that all the functions (1) take at least p times the value 1 , or q times 0 , or have r poles in the ring $R_{1}<|z|<R_{2}$. For, if not, the functions (1) must form a quasinormal family outside the circle $|z|=R_{1}$, and they have a limited number of zeros, 1-points and poles in the circle of radius $R<R_{1}$, these being respectively the zeros of $f_{1}(z)=\sum_{n=0}^{\infty} b_{n} z^{n}, f_{2}(z)=\sum_{n=0}^{\infty}\left(b_{n}-c_{n}\right) z^{n}$ and $f_{3}(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ in $|z|<R$, which, since $f_{1}(z), f_{2}(z)$ and $f_{3}(z)$ are " dominated" by $\sum_{n=0}^{\infty}\left(L_{n}+\right.$ $\left.L_{n}^{\prime}\right) z^{n}$, by Jensen's formula ${ }^{(2)}$ must ultimately exceed in absolute value

$$
R_{n+1} \sqrt{|f(0)|} / / \sqrt[n+1]{ } \sqrt{\operatorname{Max}_{|z|=R_{n=0}}^{\infty}\left(L_{n}+L_{n}\right) z^{n} \mid} .
$$

There being thus only a limited number of the zeros, 1-points and poles of the functions (1) in $|z|<R-\delta$, where δ is arbitrarily small, they form a quasi-normal family in $|z|<R-\delta$, and since R is arbitrary, we are led to the same contradiction as before, and our theorem is proved.

Remark: For integral functions $f(z)=\sum_{n=0}^{\infty} 3_{n} z^{n}$, where

$$
b_{0}=\frac{1}{2}, \quad\left(\frac{e \rho^{\prime}}{n}\right)^{\frac{1}{\rho^{\prime}}}<\left|b_{n}\right|<\left(\frac{e \rho}{n}\right)^{\frac{1}{\rho}}, \rho \geqq \rho^{\prime}>0
$$

we can find an expression of the radii of the rings in which $f(z)$ takes at least once the value 1 or the value 0 as in the above theorem. For this purpose we must adopt a different method. After Landau we have for the first $n+1 r$-points $z_{0}, z_{1}, \cdots \cdots z_{n}$ of $f(z)$ for $|z|<R$ the inequality :

$$
\begin{equation*}
\left|z_{0} z_{1} \cdots \cdots z_{n}\right| \geqq \frac{M(R)|f(0)-\eta|}{\left|M(R)^{2}-\bar{\eta} f(0)\right|} R^{n+1} \tag{6}
\end{equation*}
$$

where $M(R)$ denotes the maximum of $|f(z)|$ for $|z| \leqq R$.

1) Bull. Soc. Math. France, 52, (1924) 85.
2) Cf. Bieberbach, Enzyklopädie d. Math. Wissenschaften, Band II 3, 506.

Putting $\left|z_{0}\right| \leqq\left|z_{1}\right| \leqq \cdots \cdots \leqq\left|z_{n}\right|$ in (6), we have for both 1-points and 0 points

$$
\left|z_{n}\right| \geqq \sqrt[n+1]{\sqrt{2 M(R)}} R .
$$

Now $M(R)<e^{R^{p}}$ by (3) for $R \geqq R_{0}, R_{0}$ being a fixed constant, so that we have

$$
\left|z_{n}\right| \geqq\left(\frac{n}{e \rho}\right)^{\frac{1}{\rho}} n_{n+1} \sqrt{\frac{1}{2}} .
$$

Hence in the circle of radius

$$
R_{n}^{\prime}=\left(\frac{n}{e \rho}\right)^{\frac{1}{\rho}} n_{n+1} \sqrt{\frac{1}{2}}-\delta,
$$

where δ denotes a positive quantity, there exist at most n zeros and v_{2} 1-points of $f(z)$.

On the other hand, by Bieberbach's theorem ${ }^{(1)}$, that there exists a circlc $|z|<R^{\prime \prime}{ }_{n}$ in which all the functions $f(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ with the conditions

$$
\left|b_{i}\right|<\left(\frac{i}{e \rho}\right)^{\frac{1}{\rho}}(i=0,1,2, \cdots \cdots, n-1) \text { and }\left|b_{n}\right|>\left(\frac{n}{e \rho^{\prime}}\right)^{\frac{1}{\rho^{\prime}}}
$$

have at least n zeros or n 1-points, we find after somewhat long calcula tion for all $n>n_{0}$, such that $R^{\prime \prime} n_{0}>\bar{R}_{0},\left(\bar{R}_{0}\right.$ being a certain fixed constant of which the exact value can be determined,)

$$
\begin{equation*}
R_{n}^{\prime \prime}=\frac{2^{m n}(n+1)^{2 m-1}\left((e \rho)^{\frac{1}{\rho}}+\frac{1}{2}\right)^{m}}{2 \pi\left\{1-\frac{1}{4(2 n+1)}\right\}^{m n+1}\left(\frac{e \rho^{\prime}}{m n+1}\right)^{\frac{1}{\rho^{\prime}}}}+\delta \tag{8}
\end{equation*}
$$

where $m=5^{4 \pi^{4(2 n+1)-1}}$ and δ is positive.
By a wellknown theorem of Landau ${ }^{(2)}$ we can find a circle $|z|<K$ in which $f(z)$ takes at least once the value 1 or 0 . Then the radius $E_{\text {- }}$ of the ring $\boldsymbol{R}_{1}<|z|<R_{2}$ can be found in the following way.

Determine $\quad R_{x_{1}}^{\prime}$ in (7) so that

$$
\begin{equation*}
R_{x_{1}}^{\prime} \leftrightharpoons R_{1}, R_{x_{1}}^{\prime}>R_{0}, R_{x_{1}}^{\prime}>\overline{R_{0}}, \tag{9}
\end{equation*}
$$

where R_{0} and \bar{R}_{0} are the quantities given above and x_{1} a positive integer

1) Math. Ann. 85, 141.
2) Götting. Nachr. 1910, 303.
x_{1} being the least integer, satisfying the inequalities (9), we can take $R^{\prime \prime}{ }_{s_{1}+1}$ in (8) as R_{2}. Similarly $R^{\prime \prime}{ }_{\alpha_{2}+1}$ in (8) can be taken as the radius R_{3} of the ring $R_{2}<|z|<R_{3}, R_{x_{2}}^{\prime}$ in (7) satisfying $R_{x_{2}}^{\prime} \geqq R_{2}$, and so on.

Thus we have for sufficiently large values of p,

$$
R_{p}=\left[\frac{2^{s t+1}(s+1)^{2 t-1}\left((e \rho)^{\frac{1}{\rho}}+\frac{1}{2}\right)^{t}}{2 \pi\left(1-\frac{1}{4(2 t+1)}\right)^{s t+1}\left(\frac{e \rho^{\prime}}{s t+1}\right)^{\frac{1}{\rho^{t}}}}\right]+1
$$

where

$$
\begin{aligned}
& t=5^{4 \pi^{4(2 s+1)-1}} \\
& S=e \rho\left[\frac{2^{p q+1}(p+1)^{2 q-1}\left((e \rho)^{\frac{1}{\rho}}+\frac{1}{2}\right)^{q}}{2-\left\{1-\frac{1}{4(2 p+1)}\right\}^{p q+1}\left(\frac{e \rho^{\prime}}{p q+1}\right)^{\frac{1}{\rho^{\prime}}}}\right], q=5^{4 \pi^{4(2 p+1)-1}}
\end{aligned}
$$

[^0]: 1) A more detailed proof and allied theorems will appear in Proc. Phy-Math. Soc. Japan, Ser. (3), 8 (1926).
