118 [Vol. 3,

32. Note on a Theorem of Fekete.

By Buchin Su.

Mathematical Institute, Tohoku Imp. University, Sendai.

(Rec. Feb. 15, 1927. Comm. by M. Fujiwara, M. I. A., March 12, 1927.)

Fekete¹⁾ and Bálint²⁾ proved the following theorem:

$$P(z) = p_0 + p_1 z^{\mu_1} + p_2 z^{\mu_2} + \dots + p_k z^{\mu_k}$$

be a polynomial with k+1 terms (p_0, p_1, \dots, p_k) are any complex numbers other than zero; and $\mu_1, \mu_2, \dots, \mu_k$ are integers such that $1 \le \mu_1 < \mu_2 < \dots < \mu_k$, and $P(-1) \ne P(+1)$, then there exists at least one point z in the circle $|z| \le 2 \cdot k$ cot $\frac{\Phi}{2} \left(\Phi \le \frac{\pi}{2} \right)$ in which P(z) takes any given value γ in the domain K', whose boundary consists of two circular arcs subtending an angle Φ to the segment joining the points P(-1) and P(+1).

We can, however, extend this domain for γ into the circle K with centre $\{P(-1)+P(+1)\}/2$ and radius $\{|P(+1)-P(-1)|\cot\frac{\phi}{2}\}/2$, which contains K'.

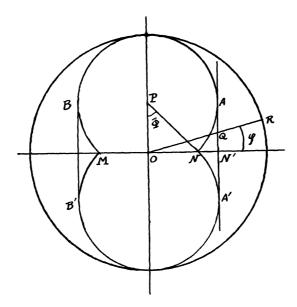
Our theorem runs as follows:

Theorem 1. Let $P(-1) \neq P(+1)$, and γ be any point in the circle K with centre $\{P(-1) + P(+1)\}/2$ and radius $\frac{1}{2}|P(+1) - P(-1)|\cot\frac{\theta}{2}$, where $\theta \leq \frac{\pi}{2}$. Then there exists at least one point z in the circle $|z| \leq 2k \cot\frac{\theta}{2}$, in which P(z) takes the value γ .

Proof. Draw two circular arcs passing through the points P(-1), P(+1), subtending an angle $\Phi \leq \frac{\pi}{2}$. Let AA', BB' be the common tangents of two circles and O the midpoint of M(P(-1)) N(P(+1)). Take a point Q on AA' and a point R(r) on the line OQ. Then since we have

¹⁾ Fekete, Jahrsb. d. Deutsch. Math. Ver. 32 (1923), 299-306.

Bálint, The same Journal, 34 (1926), 233-237.



$$\overline{OQ} = \overline{ON'}/\cos\varphi = \overline{PN}/\cos\varphi = \overline{ON}/\{\sin\varphi\cos\varphi\}, \qquad (1)$$

putting

$$\overline{OR}/\overline{OQ} = \lambda, \ 2\overline{ON} \cdot e^{i\alpha} = |P(+1) - P(-1)| \cdot e^{i\alpha}
= P(+1) - P(-1),$$
(2)

we get

$$\gamma = \{P(+1) + P(-1)\}/2 + \overline{OR} e^{i(\varphi + \alpha)}$$

$$= \{P(+1) + P(-1)\}/2 + \left[\lambda e^{i\varphi} \{P(+1) - P(-1)\}\right]/\{2\sin \varPhi \cos \varphi\},\,$$

i.e.
$$\gamma = \sigma P(-1) + \tau P(+1), \tag{3}$$

where
$$\sigma = \frac{1}{2} \left\{ 1 - \frac{\lambda e^{i\varphi}}{\sin \varPhi \cos \varphi} \right\}, \ \tau = \frac{1}{2} \left\{ 1 + \frac{\lambda e^{i\varphi}}{\sin \varPhi \cos \varphi} \right\},$$

whence

$$\tau + \sigma = 1, |\tau - \sigma| = \frac{\lambda}{\sin \theta \cos \varphi}.$$
 (4)

Now consider the locus of R for which $\frac{\lambda}{\sin \phi \cos \varphi} = \cot \frac{\phi}{2}$, which reduces, by means of (1) and (2), to the relation $\overline{OR} = \lambda \cdot \overline{OQ} = \overline{ON} \cot \frac{\phi}{2}$, or

$$OR = \left| \frac{P(+1) - P(-1)}{2} \right| \cdot \cot \frac{\phi}{2}. \tag{5}$$

That is, the locus of R is the circle K, mentioned in the theorem, which touches obviously the above circular arcs.

Thus for γ in K or on the boundary, we have

$$|\tau - \sigma| \le \cot \frac{\phi}{2}$$
. (6)

From (3), we get

$$(\sigma+\tau)p_{0}-\tau+p_{1}r_{1}+p_{2}r_{2}+\cdots\cdots+p_{k}r_{k}=0,$$

$$r_{s}=(-1)^{\mu_{s}}\sigma+\tau, \quad s=1,2,3,\cdots\cdots,k.$$

$$|p_{0}-\tau|\leq\cot\frac{\varphi}{2}. (|p_{1}|+|p_{2}|+|p_{3}|+\cdots\cdots+|p_{k}|),$$

since $|r_s| = |(-1)^{\mu_s} \sigma + \tau| \leq \cot \frac{\phi}{2}$.

Therefore there exists an integer $s \leq k$, for which $|p_0 - \gamma| \leq 2^s |p_s| \cot \frac{\varphi}{2}$,

whence

$$\left|\frac{p_0 - \gamma}{p_s}\right|^{\frac{1}{\mu_s}} \leq 2^{\frac{s}{\mu_s}} \left(\cot \frac{\varphi}{2}\right)^{\frac{1}{\mu_s}} \leq 2 \cot \frac{\varphi}{2}. \tag{7}$$

Then it follows²⁾ that the equation

$$P(z)-\gamma = p_0-\gamma + p_1 z^{\mu_1} + p_2 z^{\mu_2} + \dots + p_k z^{\mu_k} = 0$$

has at least one root in the circle $|z| \leq r$, where

$$r \le k \left| \frac{p_0 - \gamma}{p_s} \right|^{\frac{1}{\mu_s}} \le 2k \cot \frac{\varphi}{2}.$$

Thus the theorem is proved.

2. Next we can prove the following

Theorem 2. Let
$$\gamma = \sigma P(-1) + \tau P(+1)$$
, where

$$\sigma + \tau = 1, \quad |\tau - \sigma| \leq M.$$
 (8)

Then there exists at least one point z in the circle $|z| \le 2 \cdot Mk$ for which P(z) takes any value γ^* in the circle K_1 (inclusive of the boundary) with centre $\{P(-1) + P(+1)\}/2$ and radius $|\gamma - \{(P(-1) + P(+1))\}/2|$.

Proof. By the hypothesis, we can find for any γ^* in K_1 , λ and φ , such that

$$\gamma^* = \frac{P(-1) + P(+1)}{2} + \lambda \left\{ \gamma - \frac{P(-1) + P(+1)}{2} \right\} e^{i\varphi}, (0 \le \lambda \le 1).$$
That is
$$\gamma^* = \sigma^* P(-1) + \tau^* P(+1), \tag{9}$$

where

$$\sigma^* = \frac{1}{2} + \sigma \lambda e^{i\varphi} - \frac{1}{2} \lambda e^{i\varphi}, \quad \tau^* = \frac{1}{2} + \tau \lambda e^{i\varphi} - \frac{1}{2} \lambda e^{i\varphi},$$

¹⁾ Fekete, loc. cit. 303.

²⁾ Fekete, loc. cit. Hilfsatz V, 300-301.

whence

$$\sigma^* + \tau^* = 1, \quad |\tau^* - \sigma^*| \leq M.$$

Hence we can prove our theorem by a similar way as the last part of the proof of Theorem 1.

From this theorem we can deduce Theorem 1; for, we may take τ lying collinear with the points P(-1), P(+1) so that $\sigma > 0$, $\tau < 0$. Then from the relations $\tau + \sigma = 1$, $\sigma - \tau = M$, we get $\sigma = \{M-1\}/2$, $\tau = -\{M-1\}/2$, whence

$$\left| r - \frac{P(-1) + P(+1)}{2} \right| = M \cdot \left| \frac{P(+1) - P(-1)}{2} \right| \cdot$$

Hence putting $M = \cot \frac{\phi}{2}$, we get Theorem 1.

3. Finally we can extend these results to power series:

Theorem 3. If $f(z) = p_0 + p_1 z^{\mu_1} + p_2 z^{\mu_2} + \cdots + p_k z^{\mu_k} + \cdots$ be a transcendental integral function, for which the series $\frac{1}{\mu_1} + \frac{1}{\mu_2} + \cdots$ converges, and f(-1) = f(+1), then f(z) takes any value in the circle K in the Theorem 1 for at least one point z in the circle $|z| \le 8 \exp\left\{\sum_{k=2}^{\infty} \frac{1}{\mu_k - 1}\right\} \cdot \cot\frac{\phi}{2}$.

Similarly the theorem corresponding to Theorem 2 can be easily seen.

In conclusion I express my cordial thanks to Prof. Y. Okada for his kind suggestion.